Оптимизируйте свои подборки
Сохраняйте и классифицируйте контент в соответствии со своими настройками.
тензорный поток:: опс:: ПараллельныйКонкат
#include <array_ops.h>
Объединяет список N
тензоров по первому измерению.
Краткое содержание
Все входные тензоры должны иметь размер 1 в первом измерении.
Например:
# 'x' is [[1, 4]]
# 'y' is [[2, 5]]
# 'z' is [[3, 6]]
parallel_concat([x, y, z]) => [[1, 4], [2, 5], [3, 6]] # Pack along first dim.
Разница между concat и Parallel_concat заключается в том, что concat требует, чтобы все входные данные были вычислены до начала операции, но не требует, чтобы входные формы были известны во время построения графа. Параллельный конкат копирует части входных данных в выходные по мере их появления. В некоторых ситуациях это может обеспечить выигрыш в производительности.
Аргументы:
- область: объект области.
- значения: тензоры для объединения. Все они должны иметь размер 1 в первом измерении и одинаковую форму.
- форма: окончательная форма результата; должно быть равно форме любого входного сигнала, но с количеством входных значений в первом измерении.
Возврат:
Публичные атрибуты
Общественные функции
узел
::tensorflow::Node * node() const
operator::tensorflow::Input() const
оператор::tensorflow::Выход
operator::tensorflow::Output() const
Если не указано иное, контент на этой странице предоставляется по лицензии Creative Commons "С указанием авторства 4.0", а примеры кода – по лицензии Apache 2.0. Подробнее об этом написано в правилах сайта. Java – это зарегистрированный товарный знак корпорации Oracle и ее аффилированных лиц.
Последнее обновление: 2025-07-25 UTC.
[null,null,["Последнее обновление: 2025-07-25 UTC."],[],[],null,["# tensorflow::ops::ParallelConcat Class Reference\n\ntensorflow::ops::ParallelConcat\n===============================\n\n`#include \u003carray_ops.h\u003e`\n\nConcatenates a list of `N` tensors along the first dimension.\n\nSummary\n-------\n\nThe input tensors are all required to have size 1 in the first dimension.\n\nFor example:\n\n\n```scdoc\n# 'x' is [[1, 4]]\n# 'y' is [[2, 5]]\n# 'z' is [[3, 6]]\nparallel_concat([x, y, z]) =\u003e [[1, 4], [2, 5], [3, 6]] # Pack along first dim.\n```\n\n\u003cbr /\u003e\n\nThe difference between concat and parallel_concat is that concat requires all of the inputs be computed before the operation will begin but doesn't require that the input shapes be known during graph construction. Parallel concat will copy pieces of the input into the output as they become available, in some situations this can provide a performance benefit.\n\nArguments:\n\n- scope: A [Scope](/versions/r1.15/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope) object\n- values: Tensors to be concatenated. [All](/versions/r1.15/api_docs/cc/class/tensorflow/ops/all#classtensorflow_1_1ops_1_1_all) must have size 1 in the first dimension and same shape.\n- shape: the final shape of the result; should be equal to the shapes of any input but with the number of input values in the first dimension.\n\n\u003cbr /\u003e\n\nReturns:\n\n- [Output](/versions/r1.15/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output): The concatenated tensor.\n\n\u003cbr /\u003e\n\n| ### Constructors and Destructors ||\n|---|---|\n| [ParallelConcat](#classtensorflow_1_1ops_1_1_parallel_concat_1a60020ca0a0ad9b1f1f1ab296cc49745d)`(const ::`[tensorflow::Scope](/versions/r1.15/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::InputList](/versions/r1.15/api_docs/cc/class/tensorflow/input-list#classtensorflow_1_1_input_list)` values, PartialTensorShape shape)` ||\n\n| ### Public attributes ||\n|---------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|\n| [operation](#classtensorflow_1_1ops_1_1_parallel_concat_1af663fb0e8d0b48dbdd39c4663f6a995c) | [Operation](/versions/r1.15/api_docs/cc/class/tensorflow/operation#classtensorflow_1_1_operation) |\n| [output](#classtensorflow_1_1ops_1_1_parallel_concat_1ad8442cea6d8145bdcdc7fa4546c3a25c) | `::`[tensorflow::Output](/versions/r1.15/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n\n| ### Public functions ||\n|---------------------------------------------------------------------------------------------------------------------------|------------------------|\n| [node](#classtensorflow_1_1ops_1_1_parallel_concat_1ac4a6ff40acbc954f1d49c80fc94645df)`() const ` | `::tensorflow::Node *` |\n| [operator::tensorflow::Input](#classtensorflow_1_1ops_1_1_parallel_concat_1a2bf16ff17da885269b998bbd3053caea)`() const ` | ` ` ` ` |\n| [operator::tensorflow::Output](#classtensorflow_1_1ops_1_1_parallel_concat_1ab99eff81cc7f72feedcba5cb98e7b689)`() const ` | ` ` ` ` |\n\nPublic attributes\n-----------------\n\n### operation\n\n```text\nOperation operation\n``` \n\n### output\n\n```text\n::tensorflow::Output output\n``` \n\nPublic functions\n----------------\n\n### ParallelConcat\n\n```gdscript\n ParallelConcat(\n const ::tensorflow::Scope & scope,\n ::tensorflow::InputList values,\n PartialTensorShape shape\n)\n``` \n\n### node\n\n```gdscript\n::tensorflow::Node * node() const \n``` \n\n### operator::tensorflow::Input\n\n```gdscript\n operator::tensorflow::Input() const \n``` \n\n### operator::tensorflow::Output\n\n```gdscript\n operator::tensorflow::Output() const \n```"]]