Stay organized with collections
Save and categorize content based on your preferences.
tensorflow::ops::QuantizedMatMul
#include <math_ops.h>
Perform a quantized matrix multiplication of a
by the matrix b
.
Summary
The inputs must be two-dimensional matrices and the inner dimension of a
(after being transposed if transpose_a
is non-zero) must match the outer dimension of b
(after being transposed if transposed_b
is non-zero).
Arguments:
- scope: A Scope object
- a: Must be a two-dimensional tensor.
- b: Must be a two-dimensional tensor.
- min_a: The float value that the lowest quantized
a
value represents.
- max_a: The float value that the highest quantized
a
value represents.
- min_b: The float value that the lowest quantized
b
value represents.
- max_b: The float value that the highest quantized
b
value represents.
Optional attributes (see Attrs
):
- transpose_a: If true,
a
is transposed before multiplication.
- transpose_b: If true,
b
is transposed before multiplication.
- Tactivation: The type of output produced by activation function following this operation.
Returns:
Output
out
Output
min_out: The float value that the lowest quantized output value represents.
Output
max_out: The float value that the highest quantized output value represents.
Constructors and Destructors
|
QuantizedMatMul(const ::tensorflow::Scope & scope, ::tensorflow::Input a, ::tensorflow::Input b, ::tensorflow::Input min_a, ::tensorflow::Input max_a, ::tensorflow::Input min_b, ::tensorflow::Input max_b)
|
QuantizedMatMul(const ::tensorflow::Scope & scope, ::tensorflow::Input a, ::tensorflow::Input b, ::tensorflow::Input min_a, ::tensorflow::Input max_a, ::tensorflow::Input min_b, ::tensorflow::Input max_b, const QuantizedMatMul::Attrs & attrs)
|
Public attributes
Public functions
Public static functions
Tactivation
Attrs Tactivation(
DataType x
)
Toutput
Attrs Toutput(
DataType x
)
TransposeA
Attrs TransposeA(
bool x
)
TransposeB
Attrs TransposeB(
bool x
)
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2020-04-20 UTC.
[null,null,["Last updated 2020-04-20 UTC."],[],[],null,["# tensorflow::ops::QuantizedMatMul Class Reference\n\ntensorflow::ops::QuantizedMatMul\n================================\n\n`#include \u003cmath_ops.h\u003e`\n\nPerform a quantized matrix multiplication of `a` by the matrix `b`.\n\nSummary\n-------\n\nThe inputs must be two-dimensional matrices and the inner dimension of `a` (after being transposed if `transpose_a` is non-zero) must match the outer dimension of `b` (after being transposed if `transposed_b` is non-zero).\n\nArguments:\n\n- scope: A [Scope](/versions/r1.15/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope) object\n- a: Must be a two-dimensional tensor.\n- b: Must be a two-dimensional tensor.\n- min_a: The float value that the lowest quantized `a` value represents.\n- max_a: The float value that the highest quantized `a` value represents.\n- min_b: The float value that the lowest quantized `b` value represents.\n- max_b: The float value that the highest quantized `b` value represents.\n\n\u003cbr /\u003e\n\nOptional attributes (see [Attrs](/versions/r1.15/api_docs/cc/struct/tensorflow/ops/quantized-mat-mul/attrs#structtensorflow_1_1ops_1_1_quantized_mat_mul_1_1_attrs)):\n\n- transpose_a: If true, `a` is transposed before multiplication.\n- transpose_b: If true, `b` is transposed before multiplication.\n- Tactivation: The type of output produced by activation function following this operation.\n\n\u003cbr /\u003e\n\nReturns:\n\n- [Output](/versions/r1.15/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) out\n- [Output](/versions/r1.15/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) min_out: The float value that the lowest quantized output value represents.\n- [Output](/versions/r1.15/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) max_out: The float value that the highest quantized output value represents.\n\n\u003cbr /\u003e\n\n| ### Constructors and Destructors ||\n|---|---|\n| [QuantizedMatMul](#classtensorflow_1_1ops_1_1_quantized_mat_mul_1a0f09b0e35ddc6a6324c65db6ec69a731)`(const ::`[tensorflow::Scope](/versions/r1.15/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` a, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` b, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` min_a, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` max_a, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` min_b, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` max_b)` ||\n| [QuantizedMatMul](#classtensorflow_1_1ops_1_1_quantized_mat_mul_1a882f02d4d46fa0c4ddb44a2e201929dc)`(const ::`[tensorflow::Scope](/versions/r1.15/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` a, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` b, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` min_a, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` max_a, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` min_b, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` max_b, const `[QuantizedMatMul::Attrs](/versions/r1.15/api_docs/cc/struct/tensorflow/ops/quantized-mat-mul/attrs#structtensorflow_1_1ops_1_1_quantized_mat_mul_1_1_attrs)` & attrs)` ||\n\n| ### Public attributes ||\n|-----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|\n| [max_out](#classtensorflow_1_1ops_1_1_quantized_mat_mul_1ad70908bf74ce2c40aa1f778693c60d8f) | `::`[tensorflow::Output](/versions/r1.15/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n| [min_out](#classtensorflow_1_1ops_1_1_quantized_mat_mul_1a8dfe353eb1695a006f27c2cd8210b728) | `::`[tensorflow::Output](/versions/r1.15/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n| [operation](#classtensorflow_1_1ops_1_1_quantized_mat_mul_1ad9abd5818d18e9d7f03c3db5ef1464ff) | [Operation](/versions/r1.15/api_docs/cc/class/tensorflow/operation#classtensorflow_1_1_operation) |\n| [out](#classtensorflow_1_1ops_1_1_quantized_mat_mul_1a891101c5425593a778947c2a3019d4a3) | `::`[tensorflow::Output](/versions/r1.15/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n\n| ### Public static functions ||\n|---------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|\n| [Tactivation](#classtensorflow_1_1ops_1_1_quantized_mat_mul_1adf046668cb84feff06bb62ac8dfe9cb9)`(DataType x)` | [Attrs](/versions/r1.15/api_docs/cc/struct/tensorflow/ops/quantized-mat-mul/attrs#structtensorflow_1_1ops_1_1_quantized_mat_mul_1_1_attrs) |\n| [Toutput](#classtensorflow_1_1ops_1_1_quantized_mat_mul_1ab91328f7f63e496fbf14e3f2a7ca46fe)`(DataType x)` | [Attrs](/versions/r1.15/api_docs/cc/struct/tensorflow/ops/quantized-mat-mul/attrs#structtensorflow_1_1ops_1_1_quantized_mat_mul_1_1_attrs) |\n| [TransposeA](#classtensorflow_1_1ops_1_1_quantized_mat_mul_1afbe2add319dc39e1db4dc583f556def9)`(bool x)` | [Attrs](/versions/r1.15/api_docs/cc/struct/tensorflow/ops/quantized-mat-mul/attrs#structtensorflow_1_1ops_1_1_quantized_mat_mul_1_1_attrs) |\n| [TransposeB](#classtensorflow_1_1ops_1_1_quantized_mat_mul_1a6525a94155917583356eb70dd02f1f72)`(bool x)` | [Attrs](/versions/r1.15/api_docs/cc/struct/tensorflow/ops/quantized-mat-mul/attrs#structtensorflow_1_1ops_1_1_quantized_mat_mul_1_1_attrs) |\n\n| ### Structs ||\n|----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| [tensorflow::ops::QuantizedMatMul::Attrs](/versions/r1.15/api_docs/cc/struct/tensorflow/ops/quantized-mat-mul/attrs) | Optional attribute setters for [QuantizedMatMul](/versions/r1.15/api_docs/cc/class/tensorflow/ops/quantized-mat-mul#classtensorflow_1_1ops_1_1_quantized_mat_mul). |\n\nPublic attributes\n-----------------\n\n### max_out\n\n```scdoc\n::tensorflow::Output max_out\n``` \n\n### min_out\n\n```scdoc\n::tensorflow::Output min_out\n``` \n\n### operation\n\n```text\nOperation operation\n``` \n\n### out\n\n```text\n::tensorflow::Output out\n``` \n\nPublic functions\n----------------\n\n### QuantizedMatMul\n\n```gdscript\n QuantizedMatMul(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input a,\n ::tensorflow::Input b,\n ::tensorflow::Input min_a,\n ::tensorflow::Input max_a,\n ::tensorflow::Input min_b,\n ::tensorflow::Input max_b\n)\n``` \n\n### QuantizedMatMul\n\n```gdscript\n QuantizedMatMul(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input a,\n ::tensorflow::Input b,\n ::tensorflow::Input min_a,\n ::tensorflow::Input max_a,\n ::tensorflow::Input min_b,\n ::tensorflow::Input max_b,\n const QuantizedMatMul::Attrs & attrs\n)\n``` \n\nPublic static functions\n-----------------------\n\n### Tactivation\n\n```text\nAttrs Tactivation(\n DataType x\n)\n``` \n\n### Toutput\n\n```text\nAttrs Toutput(\n DataType x\n)\n``` \n\n### TransposeA\n\n```text\nAttrs TransposeA(\n bool x\n)\n``` \n\n### TransposeB\n\n```text\nAttrs TransposeB(\n bool x\n)\n```"]]