컬렉션을 사용해 정리하기
내 환경설정을 기준으로 콘텐츠를 저장하고 분류하세요.
텐서플로우:: 작전:: 스파스 크로스
#include <sparse_ops.h>
희소 및 조밀 텐서 목록에서 희소 교차를 생성합니다.
요약
이 작업은 2D SparseTensor
중 하나와 2D Tensor
중 하나, 각각 하나의 특성 열의 특성을 나타내는 두 개의 목록을 사용합니다. 이러한 기능의 배치별 교차를 사용하여 2D SparseTensor
출력합니다.
예를 들어, 입력이 다음과 같은 경우
inputs[0]: SparseTensor with shape = [2, 2]
[0, 0]: "a"
[1, 0]: "b"
[1, 1]: "c"
inputs[1]: SparseTensor with shape = [2, 1]
[0, 0]: "d"
[1, 0]: "e"
inputs[2]: Tensor [["f"], ["g"]]
그러면 출력은 다음과 같습니다
shape = [2, 2]
[0, 0]: "a_X_d_X_f"
[1, 0]: "b_X_e_X_g"
[1, 1]: "c_X_e_X_g"
hashed_output=true이면 출력은 다음과 같습니다.
shape = [2, 2]
[0, 0]: FingerprintCat64(
Fingerprint64("f"), FingerprintCat64(
Fingerprint64("d"), Fingerprint64("a")))
[1, 0]: FingerprintCat64(
Fingerprint64("g"), FingerprintCat64(
Fingerprint64("e"), Fingerprint64("b")))
[1, 1]: FingerprintCat64(
Fingerprint64("g"), FingerprintCat64(
Fingerprint64("e"), Fingerprint64("c")))
인수:
- 범위: 범위 개체
- 인덱스: 2-D. 각 입력
SparseTensor
의 인덱스입니다. - 값: 1-D. 각
SparseTensor
의 값. - 모양: 1-D. 각
SparseTensor
의 모양. - dark_inputs: 2-D. Dense
Tensor
로 표현되는 열. - hashed_output: true인 경우 문자열 대신 십자가의 해시를 반환합니다. 이렇게 하면 문자열 조작을 피할 수 있습니다.
- num_buckets: hashed_output이 true인 경우에 사용됩니다. 출력 = hashed_valuenum_buckets if num_buckets > 0 else hashed_value.
- hash_key:
FingerprintCat64
함수에서 십자형 지문을 결합하는 데 사용할 hash_key를 지정합니다.
보고:
-
Output
출력_인덱스: 2-D. 연결된 SparseTensor
의 인덱스입니다. -
Output
출력_값: 1-D. 연결되거나 해시된 SparseTensor
의 비어 있지 않은 값입니다. -
Output
출력_모양: 1-D. 연결된 SparseTensor
의 모양입니다.
공개 속성
공공 기능
달리 명시되지 않는 한 이 페이지의 콘텐츠에는 Creative Commons Attribution 4.0 라이선스에 따라 라이선스가 부여되며, 코드 샘플에는 Apache 2.0 라이선스에 따라 라이선스가 부여됩니다. 자세한 내용은 Google Developers 사이트 정책을 참조하세요. 자바는 Oracle 및/또는 Oracle 계열사의 등록 상표입니다.
최종 업데이트: 2025-07-25(UTC)
[null,null,["최종 업데이트: 2025-07-25(UTC)"],[],[],null,["# tensorflow::ops::SparseCross Class Reference\n\ntensorflow::ops::SparseCross\n============================\n\n`#include \u003csparse_ops.h\u003e`\n\nGenerates sparse cross from a list of sparse and dense tensors.\n\nSummary\n-------\n\nThe op takes two lists, one of 2D `SparseTensor` and one of 2D [Tensor](/versions/r1.15/api_docs/cc/class/tensorflow/tensor#classtensorflow_1_1_tensor), each representing features of one feature column. It outputs a 2D `SparseTensor` with the batchwise crosses of these features.\n\nFor example, if the inputs are \n\n```text\ninputs[0]: SparseTensor with shape = [2, 2]\n[0, 0]: \"a\"\n[1, 0]: \"b\"\n[1, 1]: \"c\"\n\ninputs[1]: SparseTensor with shape = [2, 1]\n[0, 0]: \"d\"\n[1, 0]: \"e\"\n\ninputs[2]: Tensor [[\"f\"], [\"g\"]]\n```\n\n\u003cbr /\u003e\n\nthen the output will be \n\n```scdoc\nshape = [2, 2]\n[0, 0]: \"a_X_d_X_f\"\n[1, 0]: \"b_X_e_X_g\"\n[1, 1]: \"c_X_e_X_g\"\n```\n\n\u003cbr /\u003e\n\nif hashed_output=true then the output will be \n\n```text\nshape = [2, 2]\n[0, 0]: FingerprintCat64(\n Fingerprint64(\"f\"), FingerprintCat64(\n Fingerprint64(\"d\"), Fingerprint64(\"a\")))\n[1, 0]: FingerprintCat64(\n Fingerprint64(\"g\"), FingerprintCat64(\n Fingerprint64(\"e\"), Fingerprint64(\"b\")))\n[1, 1]: FingerprintCat64(\n Fingerprint64(\"g\"), FingerprintCat64(\n Fingerprint64(\"e\"), Fingerprint64(\"c\")))\n```\n\n\u003cbr /\u003e\n\nArguments:\n\n- scope: A [Scope](/versions/r1.15/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope) object\n- indices: 2-D. Indices of each input `SparseTensor`.\n- values: 1-D. values of each `SparseTensor`.\n- shapes: 1-D. Shapes of each `SparseTensor`.\n- dense_inputs: 2-D. Columns represented by dense [Tensor](/versions/r1.15/api_docs/cc/class/tensorflow/tensor#classtensorflow_1_1_tensor).\n- hashed_output: If true, returns the hash of the cross instead of the string. This will allow us avoiding string manipulations.\n- num_buckets: It is used if hashed_output is true. output = hashed_valuenum_buckets if num_buckets \\\u003e 0 else hashed_value.\n- hash_key: Specify the hash_key that will be used by the `FingerprintCat64` function to combine the crosses fingerprints.\n\n\u003cbr /\u003e\n\nReturns:\n\n- [Output](/versions/r1.15/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) output_indices: 2-D. Indices of the concatenated `SparseTensor`.\n- [Output](/versions/r1.15/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) output_values: 1-D. Non-empty values of the concatenated or hashed `SparseTensor`.\n- [Output](/versions/r1.15/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) output_shape: 1-D. Shape of the concatenated `SparseTensor`.\n\n\u003cbr /\u003e\n\n| ### Constructors and Destructors ||\n|---|---|\n| [SparseCross](#classtensorflow_1_1ops_1_1_sparse_cross_1aed8888154d0f2d69bb849055ef8805ae)`(const ::`[tensorflow::Scope](/versions/r1.15/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::InputList](/versions/r1.15/api_docs/cc/class/tensorflow/input-list#classtensorflow_1_1_input_list)` indices, ::`[tensorflow::InputList](/versions/r1.15/api_docs/cc/class/tensorflow/input-list#classtensorflow_1_1_input_list)` values, ::`[tensorflow::InputList](/versions/r1.15/api_docs/cc/class/tensorflow/input-list#classtensorflow_1_1_input_list)` shapes, ::`[tensorflow::InputList](/versions/r1.15/api_docs/cc/class/tensorflow/input-list#classtensorflow_1_1_input_list)` dense_inputs, bool hashed_output, int64 num_buckets, int64 hash_key, DataType out_type, DataType internal_type)` ||\n\n| ### Public attributes ||\n|-----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|\n| [operation](#classtensorflow_1_1ops_1_1_sparse_cross_1aa80e22c2b5a8b8c00fdfbed5f6da6e03) | [Operation](/versions/r1.15/api_docs/cc/class/tensorflow/operation#classtensorflow_1_1_operation) |\n| [output_indices](#classtensorflow_1_1ops_1_1_sparse_cross_1aff3e5729686b249a84f3047cd2c7b2fa) | `::`[tensorflow::Output](/versions/r1.15/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n| [output_shape](#classtensorflow_1_1ops_1_1_sparse_cross_1a168d4af0a9f32f170b7fd033550d0d24) | `::`[tensorflow::Output](/versions/r1.15/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n| [output_values](#classtensorflow_1_1ops_1_1_sparse_cross_1a811794f95c743d1e8f345356e773447a) | `::`[tensorflow::Output](/versions/r1.15/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n\nPublic attributes\n-----------------\n\n### operation\n\n```text\nOperation operation\n``` \n\n### output_indices\n\n```scdoc\n::tensorflow::Output output_indices\n``` \n\n### output_shape\n\n```scdoc\n::tensorflow::Output output_shape\n``` \n\n### output_values\n\n```scdoc\n::tensorflow::Output output_values\n``` \n\nPublic functions\n----------------\n\n### SparseCross\n\n```gdscript\n SparseCross(\n const ::tensorflow::Scope & scope,\n ::tensorflow::InputList indices,\n ::tensorflow::InputList values,\n ::tensorflow::InputList shapes,\n ::tensorflow::InputList dense_inputs,\n bool hashed_output,\n int64 num_buckets,\n int64 hash_key,\n DataType out_type,\n DataType internal_type\n)\n```"]]