Оптимизируйте свои подборки
Сохраняйте и классифицируйте контент в соответствии со своими настройками.
тензорный поток:: опс:: Разреженный срез
#include <sparse_ops.h>
Разрежьте SparseTensor
на основе start
и size
.
Краткое содержание
Например, если входной сигнал
input_tensor = shape = [2, 7]
[ a d e ]
[b c ]
Графически выходные тензоры:
sparse_slice([0, 0], [2, 4]) = shape = [2, 4]
[ a ]
[b c ]
sparse_slice([0, 4], [2, 3]) = shape = [2, 3]
[ d e ]
[ ]
Аргументы:
- область: объект области.
- индексы: двумерный тензор представляет индексы разреженного тензора.
- значения: 1D тензор представляет значения разреженного тензора.
- форма: 1-D. tensor представляет форму разреженного тензора.
- начало: 1-Д. тензор представляет начало среза.
- размер: 1-D. тензор представляет размер среза. выходные индексы: список одномерных тензоров представляет индексы выходных разреженных тензоров.
Возврат:
-
Output
выходные_индексы -
Output
выходные_значения: список одномерных тензоров представляет значения выходных разреженных тензоров. -
Output
: список одномерных тензоров представляет форму выходных разреженных тензоров.
Публичные атрибуты
Общественные функции
Если не указано иное, контент на этой странице предоставляется по лицензии Creative Commons "С указанием авторства 4.0", а примеры кода – по лицензии Apache 2.0. Подробнее об этом написано в правилах сайта. Java – это зарегистрированный товарный знак корпорации Oracle и ее аффилированных лиц.
Последнее обновление: 2025-07-25 UTC.
[null,null,["Последнее обновление: 2025-07-25 UTC."],[],[],null,["# tensorflow::ops::SparseSlice Class Reference\n\ntensorflow::ops::SparseSlice\n============================\n\n`#include \u003csparse_ops.h\u003e`\n\nSlice a `SparseTensor` based on the `start` and `size`.\n\nSummary\n-------\n\nFor example, if the input is \n\n```objective-c\ninput_tensor = shape = [2, 7]\n[ a d e ]\n[b c ]\n```\n\n\u003cbr /\u003e\n\nGraphically the output tensors are: \n\n```objective-c\nsparse_slice([0, 0], [2, 4]) = shape = [2, 4]\n[ a ]\n[b c ]\n\nsparse_slice([0, 4], [2, 3]) = shape = [2, 3]\n[ d e ]\n[ ]\n```\n\n\u003cbr /\u003e\n\nArguments:\n\n- scope: A [Scope](/versions/r1.15/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope) object\n- indices: 2-D tensor represents the indices of the sparse tensor.\n- values: 1-D tensor represents the values of the sparse tensor.\n- shape: 1-D. tensor represents the shape of the sparse tensor.\n- start: 1-D. tensor represents the start of the slice.\n- size: 1-D. tensor represents the size of the slice. output indices: A list of 1-D tensors represents the indices of the output sparse tensors.\n\n\u003cbr /\u003e\n\nReturns:\n\n- [Output](/versions/r1.15/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) output_indices\n- [Output](/versions/r1.15/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) output_values: A list of 1-D tensors represents the values of the output sparse tensors.\n- [Output](/versions/r1.15/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) output_shape: A list of 1-D tensors represents the shape of the output sparse tensors.\n\n\u003cbr /\u003e\n\n| ### Constructors and Destructors ||\n|---|---|\n| [SparseSlice](#classtensorflow_1_1ops_1_1_sparse_slice_1ae85f2c76a6927e51533cbd7f29023384)`(const ::`[tensorflow::Scope](/versions/r1.15/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` indices, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` values, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` shape, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` start, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` size)` ||\n\n| ### Public attributes ||\n|-----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|\n| [operation](#classtensorflow_1_1ops_1_1_sparse_slice_1aed4bb735de50f6dd5197a9c1f1e0c495) | [Operation](/versions/r1.15/api_docs/cc/class/tensorflow/operation#classtensorflow_1_1_operation) |\n| [output_indices](#classtensorflow_1_1ops_1_1_sparse_slice_1aaecbd9e39db620d14102a63edfcd268b) | `::`[tensorflow::Output](/versions/r1.15/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n| [output_shape](#classtensorflow_1_1ops_1_1_sparse_slice_1a9bb1a626ae5c8aba33b1fc1faad36c60) | `::`[tensorflow::Output](/versions/r1.15/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n| [output_values](#classtensorflow_1_1ops_1_1_sparse_slice_1ac1c6b7424ce33a53834c6c362ae8790a) | `::`[tensorflow::Output](/versions/r1.15/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n\nPublic attributes\n-----------------\n\n### operation\n\n```text\nOperation operation\n``` \n\n### output_indices\n\n```scdoc\n::tensorflow::Output output_indices\n``` \n\n### output_shape\n\n```scdoc\n::tensorflow::Output output_shape\n``` \n\n### output_values\n\n```scdoc\n::tensorflow::Output output_values\n``` \n\nPublic functions\n----------------\n\n### SparseSlice\n\n```gdscript\n SparseSlice(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input indices,\n ::tensorflow::Input values,\n ::tensorflow::Input shape,\n ::tensorflow::Input start,\n ::tensorflow::Input size\n)\n```"]]