コレクションでコンテンツを整理
必要に応じて、コンテンツの保存と分類を行います。
#include <ops.h>
Initializer を使用すると、単純なプリミティブ定数や多次元配列を表すネストされた初期化子リストなど、さまざまな種類の C++ 定数から入力オブジェクトを構築できます。
まとめ
Initializerコンストラクターはすべてテンプレートであるため、前述の種類の C++ 定数を使用してInitializerを構築できます。 Initializer は、構築された値をTensorオブジェクトに保存します。
コンストラクターとデストラクター |
---|
Initializer (const T & v)
算術型のスカラー値、または文字列に変換できる型 (例: |
Initializer (const Tensor & t)
|
Initializer (const T & v, const TensorShape & shape)
スカラー値と明示的な形状から構築します。 |
Initializer (const std::initializer_list< T > & v)
スカラー (1 次元テンソル) の初期化子リストから構築します。 |
Initializer (const std::initializer_list< T > & v, const TensorShape & shape)
スカラーの初期化子リストと明示的な形状から構築します。 |
Initializer (const std::initializer_list< Initializer > & v)
入れ子になった初期化子リストから多次元テンソルを構築します。 |
パブリック属性
公共機能
特に記載のない限り、このページのコンテンツはクリエイティブ・コモンズの表示 4.0 ライセンスにより使用許諾されます。コードサンプルは Apache 2.0 ライセンスにより使用許諾されます。詳しくは、Google Developers サイトのポリシーをご覧ください。Java は Oracle および関連会社の登録商標です。
最終更新日 2025-07-26 UTC。
[null,null,["最終更新日 2025-07-26 UTC。"],[],[],null,["# tensorflow::Input::Initializer Struct Reference\n\ntensorflow::Input::Initializer\n==============================\n\n`#include \u003cops.h\u003e`\n\n[Initializer](/versions/r1.15/api_docs/cc/struct/tensorflow/input/initializer#structtensorflow_1_1_input_1_1_initializer) enables constructing an [Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input) object from various kinds of C++ constants such as simple primitive constants and nested initializer lists representing a multi-dimensional array.\n\nSummary\n-------\n\n[Initializer](/versions/r1.15/api_docs/cc/struct/tensorflow/input/initializer#structtensorflow_1_1_input_1_1_initializer) constructors are all templates, so the aforementioned kinds of C++ constants can be used to construct an [Initializer](/versions/r1.15/api_docs/cc/struct/tensorflow/input/initializer#structtensorflow_1_1_input_1_1_initializer). [Initializer](/versions/r1.15/api_docs/cc/struct/tensorflow/input/initializer#structtensorflow_1_1_input_1_1_initializer) stores the value it got constructed with in a [Tensor](/versions/r1.15/api_docs/cc/class/tensorflow/tensor#classtensorflow_1_1_tensor) object.\n\n| ### Constructors and Destructors ||\n|---|---|\n| [Initializer](#structtensorflow_1_1_input_1_1_initializer_1ade60a4fdcfa9a530604fbf39d3b5be12)`(const T & v)` Construct from a scalar value of an arithmetic type or a type that can be converted to a string (eg. ||\n| [Initializer](#structtensorflow_1_1_input_1_1_initializer_1a9314222b3303dcf97314a4bcbcaa94ad)`(const `[Tensor](/versions/r1.15/api_docs/cc/class/tensorflow/tensor#classtensorflow_1_1_tensor)` & t)` ||\n| [Initializer](#structtensorflow_1_1_input_1_1_initializer_1ab77d0712180868a7311936ca9a034835)`(const T & v, const TensorShape & shape)` Construct from a scalar value and an explicit shape. ||\n| [Initializer](#structtensorflow_1_1_input_1_1_initializer_1a91bd52431434dc5358ae8aa39070fe5f)`(const std::initializer_list\u003c T \u003e & v)` Construct from a initializer list of scalars (a one-dimensional tensor). ||\n| [Initializer](#structtensorflow_1_1_input_1_1_initializer_1a3f572c2835a2310e2d5c28138e69ae76)`(const std::initializer_list\u003c T \u003e & v, const TensorShape & shape)` Construct from a initializer list of scalars and an explicit shape. ||\n| [Initializer](#structtensorflow_1_1_input_1_1_initializer_1a8099f954da757c77ac7d8e1c32df88ce)`(const std::initializer_list\u003c `[Initializer](/versions/r1.15/api_docs/cc/struct/tensorflow/input/initializer#structtensorflow_1_1_input_1_1_initializer)` \u003e & v)` Construct a multi-dimensional tensor from a nested initializer list. ||\n\n| ### Public attributes ||\n|------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|\n| [status](#structtensorflow_1_1_input_1_1_initializer_1af0ab9526e575fd7d4b9d5f7dbabcb7e4) | [Status](/versions/r1.15/api_docs/cc/class/tensorflow/status#classtensorflow_1_1_status) |\n| [tensor](#structtensorflow_1_1_input_1_1_initializer_1a7b520438780dc80f0162a480a3cadb74) | [Tensor](/versions/r1.15/api_docs/cc/class/tensorflow/tensor#classtensorflow_1_1_tensor) |\n\n| ### Public functions ||\n|-----------------------------------------------------------------------------------------------------|---------------|\n| [AsTensorProto](#structtensorflow_1_1_input_1_1_initializer_1a6b1e360b983fec2140b756971fe7699d)`()` | `TensorProto` |\n\nPublic attributes\n-----------------\n\n### status\n\n```text\nStatus tensorflow::Input::Initializer::status\n``` \n\n### tensor\n\n```text\nTensor tensorflow::Input::Initializer::tensor\n``` \n\nPublic functions\n----------------\n\n### AsTensorProto\n\n```text\nTensorProto tensorflow::Input::Initializer::AsTensorProto()\n``` \n\n### Initializer\n\n```gdscript\n tensorflow::Input::Initializer::Initializer(\n const T & v\n)\n``` \nConstruct from a scalar value of an arithmetic type or a type that can be converted to a string (eg.\n\na string literal). \n\n### Initializer\n\n```gdscript\n tensorflow::Input::Initializer::Initializer(\n const Tensor & t\n)\n``` \n\n### Initializer\n\n```gdscript\n tensorflow::Input::Initializer::Initializer(\n const T & v,\n const TensorShape & shape\n)\n``` \nConstruct from a scalar value and an explicit shape. \n\n### Initializer\n\n```gdscript\n tensorflow::Input::Initializer::Initializer(\n const std::initializer_list\u003c T \u003e & v\n)\n``` \nConstruct from a initializer list of scalars (a one-dimensional tensor). \n\n### Initializer\n\n```gdscript\n tensorflow::Input::Initializer::Initializer(\n const std::initializer_list\u003c T \u003e & v,\n const TensorShape & shape\n)\n``` \nConstruct from a initializer list of scalars and an explicit shape. \n\n### Initializer\n\n```gdscript\n tensorflow::Input::Initializer::Initializer(\n const std::initializer_list\u003c Initializer \u003e & v\n)\n``` \nConstruct a multi-dimensional tensor from a nested initializer list.\n\nNote that C++ syntax allows nesting of arbitrarily typed initializer lists, so such invalid initializers cannot be disallowed at compile time. This function performs checks to make sure that the nested initializer list is indeed a valid multi-dimensional tensor."]]