تدفق التوتر:: العمليات:: BatchMatMul
#include <math_ops.h>
ضرب شرائح اثنين من الموتدين على دفعات.
ملخص
مضاعفة جميع شرائح Tensor
x
و y
(يمكن عرض كل شريحة كعنصر من عناصر الدفعة)، وترتيب النتائج الفردية في موتر إخراج واحد بنفس حجم الدفعة. يمكن أن تكون كل شريحة من الشرائح الفردية متجاورة بشكل اختياري (مجاورة المصفوفة تعني تبديلها وتصريفها) قبل الضرب عن طريق تعيين علامة adj_x
أو adj_y
على True
، والتي تكون افتراضيًا False
.
موترات الإدخال x
و y
هي ثنائية الأبعاد أو أعلى بالشكل [..., r_x, c_x]
و [..., r_y, c_y]
.
موتر الإخراج ثنائي الأبعاد أو أعلى بالشكل [..., r_o, c_o]
حيث:
r_o = c_x if adj_x else r_x
c_o = r_y if adj_y else c_y
ويتم حسابها على النحو التالي:
output[..., :, :] = matrix(x[..., :, :]) * matrix(y[..., :, :])
الحجج:
- النطاق: كائن النطاق
- x: ثنائي الأبعاد أو أعلى بالشكل
[..., r_x, c_x]
. - y: ثنائي الأبعاد أو أعلى بالشكل
[..., r_y, c_y]
.
السمات الاختيارية (انظر Attrs
):
- adj_x: إذا كان
True
، قم بضم شرائح x
إلى جوارها. الإعدادات الافتراضية إلى False
. - adj_y: إذا كان
True
، بجوار شرائح y
. الإعدادات الافتراضية إلى False
.
العوائد:
-
Output
: ثلاثي الأبعاد أو أعلى بالشكل [..., r_o, c_o]
وظائف ثابتة العامة |
---|
AdjX (bool x) | |
AdjY (bool x) | |
الصفات العامة
عملية
Operation operation
الإخراج
::tensorflow::Output output
الوظائف العامة
BatchMatMul
BatchMatMul(
const ::tensorflow::Scope & scope,
::tensorflow::Input x,
::tensorflow::Input y
)
BatchMatMul
BatchMatMul(
const ::tensorflow::Scope & scope,
::tensorflow::Input x,
::tensorflow::Input y,
const BatchMatMul::Attrs & attrs
)
العقدة
::tensorflow::Node * node() const
operator::tensorflow::Input() const
المشغل::tensorflow::الإخراج
operator::tensorflow::Output() const
وظائف ثابتة العامة
AdjX
Attrs AdjX(
bool x
)
أدجي
Attrs AdjY(
bool x
)
إنّ محتوى هذه الصفحة مرخّص بموجب ترخيص Creative Commons Attribution 4.0 ما لم يُنصّ على خلاف ذلك، ونماذج الرموز مرخّصة بموجب ترخيص Apache 2.0. للاطّلاع على التفاصيل، يُرجى مراجعة سياسات موقع Google Developers. إنّ Java هي علامة تجارية مسجَّلة لشركة Oracle و/أو شركائها التابعين.
تاريخ التعديل الأخير: 2025-07-26 (حسب التوقيت العالمي المتفَّق عليه)
[null,null,["تاريخ التعديل الأخير: 2025-07-26 (حسب التوقيت العالمي المتفَّق عليه)"],[],[],null,["# tensorflow::ops::BatchMatMul Class Reference\n\ntensorflow::ops::BatchMatMul\n============================\n\n`#include \u003cmath_ops.h\u003e`\n\nMultiplies slices of two tensors in batches.\n\nSummary\n-------\n\nMultiplies all slices of [Tensor](/versions/r2.2/api_docs/cc/class/tensorflow/tensor#classtensorflow_1_1_tensor)`x` and `y` (each slice can be viewed as an element of a batch), and arranges the individual results in a single output tensor of the same batch size. Each of the individual slices can optionally be adjointed (to adjoint a matrix means to transpose and conjugate it) before multiplication by setting the `adj_x` or `adj_y` flag to `True`, which are by default `False`.\n\nThe input tensors `x` and `y` are 2-D or higher with shape `[..., r_x, c_x]` and `[..., r_y, c_y]`.\n\nThe output tensor is 2-D or higher with shape `[..., r_o, c_o]`, where: \n\n```scdoc\nr_o = c_x if adj_x else r_x\nc_o = r_y if adj_y else c_y\n```\n\n\u003cbr /\u003e\n\nIt is computed as: \n\n```scdoc\noutput[..., :, :] = matrix(x[..., :, :]) * matrix(y[..., :, :])\n```\n\n\u003cbr /\u003e\n\nArguments:\n\n- scope: A [Scope](/versions/r2.2/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope) object\n- x: 2-D or higher with shape `[..., r_x, c_x]`.\n- y: 2-D or higher with shape `[..., r_y, c_y]`.\n\n\u003cbr /\u003e\n\nOptional attributes (see [Attrs](/versions/r2.2/api_docs/cc/struct/tensorflow/ops/batch-mat-mul/attrs#structtensorflow_1_1ops_1_1_batch_mat_mul_1_1_attrs)):\n\n- adj_x: If `True`, adjoint the slices of `x`. Defaults to `False`.\n- adj_y: If `True`, adjoint the slices of `y`. Defaults to `False`.\n\n\u003cbr /\u003e\n\nReturns:\n\n- [Output](/versions/r2.2/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output): 3-D or higher with shape `[..., r_o, c_o]`\n\n\u003cbr /\u003e\n\n| ### Constructors and Destructors ||\n|---|---|\n| [BatchMatMul](#classtensorflow_1_1ops_1_1_batch_mat_mul_1a951cabca8c8dbcf8b746969d80f2b480)`(const ::`[tensorflow::Scope](/versions/r2.2/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r2.2/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` x, ::`[tensorflow::Input](/versions/r2.2/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` y)` ||\n| [BatchMatMul](#classtensorflow_1_1ops_1_1_batch_mat_mul_1aec4aecf952592bd193eca45a9900ebe1)`(const ::`[tensorflow::Scope](/versions/r2.2/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r2.2/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` x, ::`[tensorflow::Input](/versions/r2.2/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` y, const `[BatchMatMul::Attrs](/versions/r2.2/api_docs/cc/struct/tensorflow/ops/batch-mat-mul/attrs#structtensorflow_1_1ops_1_1_batch_mat_mul_1_1_attrs)` & attrs)` ||\n\n| ### Public attributes ||\n|-------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|\n| [operation](#classtensorflow_1_1ops_1_1_batch_mat_mul_1a255c486fdefe3708a3355e3f85e8daf2) | [Operation](/versions/r2.2/api_docs/cc/class/tensorflow/operation#classtensorflow_1_1_operation) |\n| [output](#classtensorflow_1_1ops_1_1_batch_mat_mul_1ad3a290bbf8589298ccf6cd5bf0018a53) | `::`[tensorflow::Output](/versions/r2.2/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n\n| ### Public functions ||\n|-------------------------------------------------------------------------------------------------------------------------|------------------------|\n| [node](#classtensorflow_1_1ops_1_1_batch_mat_mul_1af21f279f44b701fb277af586e5f0dd69)`() const ` | `::tensorflow::Node *` |\n| [operator::tensorflow::Input](#classtensorflow_1_1ops_1_1_batch_mat_mul_1aa6685ef6076abe41dc6d4f97156d77cb)`() const ` | ` ` ` ` |\n| [operator::tensorflow::Output](#classtensorflow_1_1ops_1_1_batch_mat_mul_1a7d6d385af7d73a390e36ccc7e6989345)`() const ` | ` ` ` ` |\n\n| ### Public static functions ||\n|------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|\n| [AdjX](#classtensorflow_1_1ops_1_1_batch_mat_mul_1a47c8466020881eced6720f2f415053dd)`(bool x)` | [Attrs](/versions/r2.2/api_docs/cc/struct/tensorflow/ops/batch-mat-mul/attrs#structtensorflow_1_1ops_1_1_batch_mat_mul_1_1_attrs) |\n| [AdjY](#classtensorflow_1_1ops_1_1_batch_mat_mul_1a3f939eb8aea098cdf431a3b626274e6b)`(bool x)` | [Attrs](/versions/r2.2/api_docs/cc/struct/tensorflow/ops/batch-mat-mul/attrs#structtensorflow_1_1ops_1_1_batch_mat_mul_1_1_attrs) |\n\n| ### Structs ||\n|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|\n| [tensorflow::ops::BatchMatMul::Attrs](/versions/r2.2/api_docs/cc/struct/tensorflow/ops/batch-mat-mul/attrs) | Optional attribute setters for [BatchMatMul](/versions/r2.2/api_docs/cc/class/tensorflow/ops/batch-mat-mul#classtensorflow_1_1ops_1_1_batch_mat_mul). |\n\nPublic attributes\n-----------------\n\n### operation\n\n```text\nOperation operation\n``` \n\n### output\n\n```text\n::tensorflow::Output output\n``` \n\nPublic functions\n----------------\n\n### BatchMatMul\n\n```gdscript\n BatchMatMul(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input x,\n ::tensorflow::Input y\n)\n``` \n\n### BatchMatMul\n\n```gdscript\n BatchMatMul(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input x,\n ::tensorflow::Input y,\n const BatchMatMul::Attrs & attrs\n)\n``` \n\n### node\n\n```gdscript\n::tensorflow::Node * node() const \n``` \n\n### operator::tensorflow::Input\n\n```gdscript\n operator::tensorflow::Input() const \n``` \n\n### operator::tensorflow::Output\n\n```gdscript\n operator::tensorflow::Output() const \n``` \n\nPublic static functions\n-----------------------\n\n### AdjX\n\n```text\nAttrs AdjX(\n bool x\n)\n``` \n\n### AdjY\n\n```text\nAttrs AdjY(\n bool x\n)\n```"]]