تدفق التوتر:: العمليات:: LRN
#include <nn_ops.h>
تطبيع الاستجابة المحلية.
ملخص
يتم التعامل مع موتر input
رباعي الأبعاد كمصفوفة ثلاثية الأبعاد من المتجهات أحادية الأبعاد (على طول البعد الأخير)، ويتم تسوية كل متجه بشكل مستقل. داخل متجه معين، يتم تقسيم كل مكون على المجموع المربع والمرجح للمدخلات داخل depth_radius
. بالتفصيل،
sqr_sum[a, b, c, d] =
sum(input[a, b, c, d - depth_radius : d + depth_radius + 1] ** 2)
output = input / (bias + alpha * sqr_sum) ** beta
لمزيد من التفاصيل، راجع Krizhevsky et al.، تصنيف ImageNet مع الشبكات العصبية التلافيفية العميقة (NIPS 2012) .
الحجج:
- النطاق: كائن النطاق
- الإدخال: 4-د.
السمات الاختيارية (انظر Attrs
):
- عمق_نصف القطر: 0-D. نصف عرض نافذة التطبيع 1-D.
- الانحياز: إزاحة (عادة ما تكون موجبة لتجنب القسمة على 0).
- ألفا: عامل مقياس، وعادة ما يكون إيجابيا.
- بيتا: الأس.
العوائد:
الصفات العامة
عملية
Operation operation
الإخراج
::tensorflow::Output output
الوظائف العامة
LRN
LRN(
const ::tensorflow::Scope & scope,
::tensorflow::Input input
)
LRN
LRN(
const ::tensorflow::Scope & scope,
::tensorflow::Input input,
const LRN::Attrs & attrs
)
العقدة
::tensorflow::Node * node() const
operator::tensorflow::Input() const
المشغل::tensorflow::الإخراج
operator::tensorflow::Output() const
وظائف ثابتة العامة
ألفا
Attrs Alpha(
float x
)
بيتا
Attrs Beta(
float x
)
تحيز
Attrs Bias(
float x
)
نصف قطر العمق
Attrs DepthRadius(
int64 x
)
إنّ محتوى هذه الصفحة مرخّص بموجب ترخيص Creative Commons Attribution 4.0 ما لم يُنصّ على خلاف ذلك، ونماذج الرموز مرخّصة بموجب ترخيص Apache 2.0. للاطّلاع على التفاصيل، يُرجى مراجعة سياسات موقع Google Developers. إنّ Java هي علامة تجارية مسجَّلة لشركة Oracle و/أو شركائها التابعين.
تاريخ التعديل الأخير: 2025-07-27 (حسب التوقيت العالمي المتفَّق عليه)
[null,null,["تاريخ التعديل الأخير: 2025-07-27 (حسب التوقيت العالمي المتفَّق عليه)"],[],[],null,["# tensorflow::ops::LRN Class Reference\n\ntensorflow::ops::LRN\n====================\n\n`#include \u003cnn_ops.h\u003e`\n\nLocal Response Normalization.\n\nSummary\n-------\n\nThe 4-D `input` tensor is treated as a 3-D array of 1-D vectors (along the last dimension), and each vector is normalized independently. Within a given vector, each component is divided by the weighted, squared sum of inputs within `depth_radius`. In detail, \n\n```scdoc\nsqr_sum[a, b, c, d] =\n sum(input[a, b, c, d - depth_radius : d + depth_radius + 1] ** 2)\noutput = input / (bias + alpha * sqr_sum) ** beta\n```\n\n\u003cbr /\u003e\n\nFor details, see [Krizhevsky et al., ImageNet classification with deep convolutional neural networks (NIPS 2012)](http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks).\n\nArguments:\n\n- scope: A [Scope](/versions/r2.2/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope) object\n- input: 4-D.\n\n\u003cbr /\u003e\n\nOptional attributes (see [Attrs](/versions/r2.2/api_docs/cc/struct/tensorflow/ops/l-r-n/attrs#structtensorflow_1_1ops_1_1_l_r_n_1_1_attrs)):\n\n- depth_radius: 0-D. Half-width of the 1-D normalization window.\n- bias: An offset (usually positive to avoid dividing by 0).\n- alpha: A scale factor, usually positive.\n- beta: An exponent.\n\n\u003cbr /\u003e\n\nReturns:\n\n- [Output](/versions/r2.2/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output): The output tensor.\n\n\u003cbr /\u003e\n\n| ### Constructors and Destructors ||\n|---|---|\n| [LRN](#classtensorflow_1_1ops_1_1_l_r_n_1adbadf9462bc6ae9916f535bb2aa2762f)`(const ::`[tensorflow::Scope](/versions/r2.2/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r2.2/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` input)` ||\n| [LRN](#classtensorflow_1_1ops_1_1_l_r_n_1ab702d3657c46710fcf7a63f7c712c5df)`(const ::`[tensorflow::Scope](/versions/r2.2/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r2.2/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` input, const `[LRN::Attrs](/versions/r2.2/api_docs/cc/struct/tensorflow/ops/l-r-n/attrs#structtensorflow_1_1ops_1_1_l_r_n_1_1_attrs)` & attrs)` ||\n\n| ### Public attributes ||\n|-----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|\n| [operation](#classtensorflow_1_1ops_1_1_l_r_n_1a001e6e41e5fb3ff78b42decdd680ea82) | [Operation](/versions/r2.2/api_docs/cc/class/tensorflow/operation#classtensorflow_1_1_operation) |\n| [output](#classtensorflow_1_1ops_1_1_l_r_n_1a69396918e55e1de00f68a1113ef173b0) | `::`[tensorflow::Output](/versions/r2.2/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n\n| ### Public functions ||\n|-----------------------------------------------------------------------------------------------------------------|------------------------|\n| [node](#classtensorflow_1_1ops_1_1_l_r_n_1aa28d07232c5df13dad811653f1276a2a)`() const ` | `::tensorflow::Node *` |\n| [operator::tensorflow::Input](#classtensorflow_1_1ops_1_1_l_r_n_1aa00d48e5a8ca805aa2532b7155b8c28b)`() const ` | ` ` ` ` |\n| [operator::tensorflow::Output](#classtensorflow_1_1ops_1_1_l_r_n_1ae58da447d50c92abb12785d8ab7b618b)`() const ` | ` ` ` ` |\n\n| ### Public static functions ||\n|------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|\n| [Alpha](#classtensorflow_1_1ops_1_1_l_r_n_1a7788a93182ddfbf8bb5bd1820b081392)`(float x)` | [Attrs](/versions/r2.2/api_docs/cc/struct/tensorflow/ops/l-r-n/attrs#structtensorflow_1_1ops_1_1_l_r_n_1_1_attrs) |\n| [Beta](#classtensorflow_1_1ops_1_1_l_r_n_1a6bbb26306e2265f6e2368f5dfb39ef13)`(float x)` | [Attrs](/versions/r2.2/api_docs/cc/struct/tensorflow/ops/l-r-n/attrs#structtensorflow_1_1ops_1_1_l_r_n_1_1_attrs) |\n| [Bias](#classtensorflow_1_1ops_1_1_l_r_n_1ac8da24639c0d90ef6e68df756f3e345f)`(float x)` | [Attrs](/versions/r2.2/api_docs/cc/struct/tensorflow/ops/l-r-n/attrs#structtensorflow_1_1ops_1_1_l_r_n_1_1_attrs) |\n| [DepthRadius](#classtensorflow_1_1ops_1_1_l_r_n_1ac579054901f30ab7fd4989ca39237a0e)`(int64 x)` | [Attrs](/versions/r2.2/api_docs/cc/struct/tensorflow/ops/l-r-n/attrs#structtensorflow_1_1ops_1_1_l_r_n_1_1_attrs) |\n\n| ### Structs ||\n|---------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|\n| [tensorflow::ops::LRN::Attrs](/versions/r2.2/api_docs/cc/struct/tensorflow/ops/l-r-n/attrs) | Optional attribute setters for [LRN](/versions/r2.2/api_docs/cc/class/tensorflow/ops/l-r-n#classtensorflow_1_1ops_1_1_l_r_n). |\n\nPublic attributes\n-----------------\n\n### operation\n\n```text\nOperation operation\n``` \n\n### output\n\n```text\n::tensorflow::Output output\n``` \n\nPublic functions\n----------------\n\n### LRN\n\n```gdscript\n LRN(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input input\n)\n``` \n\n### LRN\n\n```gdscript\n LRN(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input input,\n const LRN::Attrs & attrs\n)\n``` \n\n### node\n\n```gdscript\n::tensorflow::Node * node() const \n``` \n\n### operator::tensorflow::Input\n\n```gdscript\n operator::tensorflow::Input() const \n``` \n\n### operator::tensorflow::Output\n\n```gdscript\n operator::tensorflow::Output() const \n``` \n\nPublic static functions\n-----------------------\n\n### Alpha\n\n```text\nAttrs Alpha(\n float x\n)\n``` \n\n### Beta\n\n```text\nAttrs Beta(\n float x\n)\n``` \n\n### Bias\n\n```text\nAttrs Bias(\n float x\n)\n``` \n\n### DepthRadius\n\n```text\nAttrs DepthRadius(\n int64 x\n)\n```"]]