Restez organisé à l'aide des collections
Enregistrez et classez les contenus selon vos préférences.
flux tensoriel : : opérations : : MatrixSetDiag
#include <array_ops.h>
Renvoie un tenseur matriciel par lots avec de nouvelles valeurs diagonales par lots.
Résumé
Étant donné input
et diagonal
, cette opération renvoie un tenseur avec la même forme et les mêmes valeurs que input
, à l'exception de la diagonale principale des matrices les plus internes. Celles-ci seront écrasées par les valeurs en diagonal
.
Le résultat est calculé comme suit :
Supposons que input
a k+1
dimensions [I, J, K, ..., M, N]
et que diagonal
a k
dimensions [I, J, K, ..., min(M, N)]
. Alors la sortie est un tenseur de rang k+1
de dimensions [I, J, K, ..., M, N]
où :
-
output[i, j, k, ..., m, n] = diagonal[i, j, k, ..., n]
pour m == n
. -
output[i, j, k, ..., m, n] = input[i, j, k, ..., m, n]
pour m != n
.
Arguments :
- scope : un objet Scope
- entrée : Rang
k+1
, où k >= 1
. - diagonale : Rang
k
, où k >= 1
.
Retours :
-
Output
: Rang k+1
, avec output.shape = input.shape
.
Attributs publics
Fonctions publiques
nœud
::tensorflow::Node * node() const
operator::tensorflow::Input() const
opérateur :: tensorflow :: Sortie
operator::tensorflow::Output() const
Sauf indication contraire, le contenu de cette page est régi par une licence Creative Commons Attribution 4.0, et les échantillons de code sont régis par une licence Apache 2.0. Pour en savoir plus, consultez les Règles du site Google Developers. Java est une marque déposée d'Oracle et/ou de ses sociétés affiliées.
Dernière mise à jour le 2025/07/27 (UTC).
[null,null,["Dernière mise à jour le 2025/07/27 (UTC)."],[],[],null,["# tensorflow::ops::MatrixSetDiag Class Reference\n\ntensorflow::ops::MatrixSetDiag\n==============================\n\n`#include \u003carray_ops.h\u003e`\n\nReturns a batched matrix tensor with new batched diagonal values.\n\nSummary\n-------\n\nGiven `input` and `diagonal`, this operation returns a tensor with the same shape and values as `input`, except for the main diagonal of the innermost matrices. These will be overwritten by the values in `diagonal`.\n\nThe output is computed as follows:\n\nAssume `input` has `k+1` dimensions `[I, J, K, ..., M, N]` and `diagonal` has `k` dimensions `[I, J, K, ..., min(M, N)]`. Then the output is a tensor of rank `k+1` with dimensions `[I, J, K, ..., M, N]` where:\n\n\n- `output[i, j, k, ..., m, n] = diagonal[i, j, k, ..., n]` for `m == n`.\n- `output[i, j, k, ..., m, n] = input[i, j, k, ..., m, n]` for `m != n`.\n\n\u003cbr /\u003e\n\nArguments:\n\n- scope: A [Scope](/versions/r2.2/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope) object\n- input: Rank `k+1`, where `k \u003e= 1`.\n- diagonal: Rank `k`, where `k \u003e= 1`.\n\n\u003cbr /\u003e\n\nReturns:\n\n- [Output](/versions/r2.2/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output): Rank `k+1`, with `output.shape = input.shape`.\n\n\u003cbr /\u003e\n\n| ### Constructors and Destructors ||\n|---|---|\n| [MatrixSetDiag](#classtensorflow_1_1ops_1_1_matrix_set_diag_1af9f6deaf5d71f88356239fd1fceb3bd5)`(const ::`[tensorflow::Scope](/versions/r2.2/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r2.2/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` input, ::`[tensorflow::Input](/versions/r2.2/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` diagonal)` ||\n\n| ### Public attributes ||\n|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|\n| [operation](#classtensorflow_1_1ops_1_1_matrix_set_diag_1ac564fb65fed63cd95c5a876d8cfcb004) | [Operation](/versions/r2.2/api_docs/cc/class/tensorflow/operation#classtensorflow_1_1_operation) |\n| [output](#classtensorflow_1_1ops_1_1_matrix_set_diag_1a58d08deb35db4f1602c1df59432ade6c) | `::`[tensorflow::Output](/versions/r2.2/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n\n| ### Public functions ||\n|---------------------------------------------------------------------------------------------------------------------------|------------------------|\n| [node](#classtensorflow_1_1ops_1_1_matrix_set_diag_1a20fc7ca0974220bfcd3a3aee08803d6c)`() const ` | `::tensorflow::Node *` |\n| [operator::tensorflow::Input](#classtensorflow_1_1ops_1_1_matrix_set_diag_1af98eee12ae5e443a923b794be760afd7)`() const ` | ` ` ` ` |\n| [operator::tensorflow::Output](#classtensorflow_1_1ops_1_1_matrix_set_diag_1adf4b733c12f7c7dc2387318fafff0413)`() const ` | ` ` ` ` |\n\nPublic attributes\n-----------------\n\n### operation\n\n```text\nOperation operation\n``` \n\n### output\n\n```text\n::tensorflow::Output output\n``` \n\nPublic functions\n----------------\n\n### MatrixSetDiag\n\n```gdscript\n MatrixSetDiag(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input input,\n ::tensorflow::Input diagonal\n)\n``` \n\n### node\n\n```gdscript\n::tensorflow::Node * node() const \n``` \n\n### operator::tensorflow::Input\n\n```gdscript\n operator::tensorflow::Input() const \n``` \n\n### operator::tensorflow::Output\n\n```gdscript\n operator::tensorflow::Output() const \n```"]]