সেভ করা পৃষ্ঠা গুছিয়ে রাখতে 'সংগ্রহ' ব্যবহার করুন
আপনার পছন্দ অনুযায়ী কন্টেন্ট সেভ করুন ও সঠিক বিভাগে রাখুন।
টেনসরফ্লো :: অপস:: সিংহ
#include <math_ops.h>
x মৌল-ভিত্তিক হাইপারবোলিক সাইন গণনা করে।
সারাংশ
একটি ইনপুট টেনসর দেওয়া হয়েছে, এই ফাংশনটি টেনসরের প্রতিটি উপাদানের হাইপারবোলিক সাইন গণনা করে। ইনপুট রেঞ্জ হল [-inf,inf]
এবং আউটপুট রেঞ্জ হল [-inf,inf]
।
x = tf.constant([-float("inf"), -9, -0.5, 1, 1.2, 2, 10, float("inf")])
tf.math.sinh(x) ==> [-inf -4.0515420e+03 -5.2109528e-01 1.1752012e+00 1.5094614e+00 3.6268604e+00 1.1013232e+04 inf]
যুক্তি:
- স্কোপ: একটি স্কোপ অবজেক্ট
রিটার্ন:
পাবলিক বৈশিষ্ট্য
পাবলিক ফাংশন
নোড
::tensorflow::Node * node() const
operator::tensorflow::Input() const
অপারেটর::টেনসরফ্লো::আউটপুট
operator::tensorflow::Output() const
অন্য কিছু উল্লেখ না করা থাকলে, এই পৃষ্ঠার কন্টেন্ট Creative Commons Attribution 4.0 License-এর অধীনে এবং কোডের নমুনাগুলি Apache 2.0 License-এর অধীনে লাইসেন্স প্রাপ্ত। আরও জানতে, Google Developers সাইট নীতি দেখুন। Java হল Oracle এবং/অথবা তার অ্যাফিলিয়েট সংস্থার রেজিস্টার্ড ট্রেডমার্ক।
2025-07-27 UTC-তে শেষবার আপডেট করা হয়েছে।
[null,null,["2025-07-27 UTC-তে শেষবার আপডেট করা হয়েছে।"],[],[],null,["# tensorflow::ops::Sinh Class Reference\n\ntensorflow::ops::Sinh\n=====================\n\n`#include \u003cmath_ops.h\u003e`\n\nComputes hyperbolic sine of x element-wise.\n\nSummary\n-------\n\nGiven an input tensor, this function computes hyperbolic sine of every element in the tensor. [Input](/versions/r2.2/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input) range is `[-inf,inf]` and output range is `[-inf,inf]`.\n\n\n```gdscript\n x = tf.constant([-float(\"inf\"), -9, -0.5, 1, 1.2, 2, 10, float(\"inf\")])\n tf.math.sinh(x) ==\u003e [-inf -4.0515420e+03 -5.2109528e-01 1.1752012e+00 1.5094614e+00 3.6268604e+00 1.1013232e+04 inf]\n \n```\n\n\u003cbr /\u003e\n\nArguments:\n\n- scope: A [Scope](/versions/r2.2/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope) object\n\n\u003cbr /\u003e\n\nReturns:\n\n- [Output](/versions/r2.2/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output): The y tensor.\n\n\u003cbr /\u003e\n\n| ### Constructors and Destructors ||\n|---|---|\n| [Sinh](#classtensorflow_1_1ops_1_1_sinh_1a858b848cd4213f41cd00d200ee172d66)`(const ::`[tensorflow::Scope](/versions/r2.2/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r2.2/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` x)` ||\n\n| ### Public attributes ||\n|----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|\n| [operation](#classtensorflow_1_1ops_1_1_sinh_1a93105ee301fb80969eb476bdb33638da) | [Operation](/versions/r2.2/api_docs/cc/class/tensorflow/operation#classtensorflow_1_1_operation) |\n| [y](#classtensorflow_1_1ops_1_1_sinh_1ada558096ec0c6a3e1775a276b4196d05) | `::`[tensorflow::Output](/versions/r2.2/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n\n| ### Public functions ||\n|----------------------------------------------------------------------------------------------------------------|------------------------|\n| [node](#classtensorflow_1_1ops_1_1_sinh_1a471f0f546ee40901a6829259e765fc83)`() const ` | `::tensorflow::Node *` |\n| [operator::tensorflow::Input](#classtensorflow_1_1ops_1_1_sinh_1a7a599755188d6873433458bf4094bbe1)`() const ` | ` ` ` ` |\n| [operator::tensorflow::Output](#classtensorflow_1_1ops_1_1_sinh_1adc39c87163a76f66a80ff2bb7193eef2)`() const ` | ` ` ` ` |\n\nPublic attributes\n-----------------\n\n### operation\n\n```text\nOperation operation\n``` \n\n### y\n\n```text\n::tensorflow::Output y\n``` \n\nPublic functions\n----------------\n\n### Sinh\n\n```gdscript\n Sinh(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input x\n)\n``` \n\n### node\n\n```gdscript\n::tensorflow::Node * node() const \n``` \n\n### operator::tensorflow::Input\n\n```gdscript\n operator::tensorflow::Input() const \n``` \n\n### operator::tensorflow::Output\n\n```gdscript\n operator::tensorflow::Output() const \n```"]]