Restez organisé à l'aide des collections
Enregistrez et classez les contenus selon vos préférences.
flux tensoriel : : opérations : : SparseDenseCwiseAjouter
#include <sparse_ops.h>
Additionne un SparseTensor et un dense Tensor , en utilisant ces règles spéciales :
Résumé
(1) Diffuse le côté dense pour qu'il ait la même forme que le côté clairsemé, s'il est éligible ; (2) Ensuite, seules les valeurs denses pointées par les indices du SparseTensor participent à l'addition intelligente.
Selon ces règles, le résultat est un SparseTensor logique avec exactement les mêmes indices et la même forme, mais éventuellement avec des valeurs différentes non nulles. La sortie de cette opération correspond aux valeurs non nulles résultantes.
Arguments :
- scope : un objet Scope
- sp_indices : 2-D. Matrice
N x R
avec les indices de valeurs non vides dans un SparseTensor, éventuellement pas dans l'ordre canonique. - sp_values : 1-D.
N
valeurs non vides correspondant à sp_indices
. - sp_shape : 1-D. Forme du SparseTensor d’entrée.
- dense :
R
-D. L'opérande Tensor dense.
Retours :
-
Output
: 1-D. Les N
valeurs sur lesquelles on opère.
Attributs publics
Fonctions publiques
nœud
::tensorflow::Node * node() const
operator::tensorflow::Input() const
opérateur :: tensorflow :: Sortie
operator::tensorflow::Output() const
Sauf indication contraire, le contenu de cette page est régi par une licence Creative Commons Attribution 4.0, et les échantillons de code sont régis par une licence Apache 2.0. Pour en savoir plus, consultez les Règles du site Google Developers. Java est une marque déposée d'Oracle et/ou de ses sociétés affiliées.
Dernière mise à jour le 2025/07/27 (UTC).
[null,null,["Dernière mise à jour le 2025/07/27 (UTC)."],[],[],null,["# tensorflow::ops::SparseDenseCwiseAdd Class Reference\n\ntensorflow::ops::SparseDenseCwiseAdd\n====================================\n\n`#include \u003csparse_ops.h\u003e`\n\nAdds up a SparseTensor and a dense [Tensor](/versions/r2.2/api_docs/cc/class/tensorflow/tensor#classtensorflow_1_1_tensor), using these special rules:\n\nSummary\n-------\n\n(1) Broadcasts the dense side to have the same shape as the sparse side, if eligible; (2) Then, only the dense values pointed to by the indices of the SparseTensor participate in the cwise addition.\n\nBy these rules, the result is a logical SparseTensor with exactly the same indices and shape, but possibly with different non-zero values. The output of this Op is the resultant non-zero values.\n\nArguments:\n\n- scope: A [Scope](/versions/r2.2/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope) object\n- sp_indices: 2-D. `N x R` matrix with the indices of non-empty values in a SparseTensor, possibly not in canonical ordering.\n- sp_values: 1-D. `N` non-empty values corresponding to `sp_indices`.\n- sp_shape: 1-D. Shape of the input SparseTensor.\n- dense: `R`-D. The dense [Tensor](/versions/r2.2/api_docs/cc/class/tensorflow/tensor#classtensorflow_1_1_tensor) operand.\n\n\u003cbr /\u003e\n\nReturns:\n\n- [Output](/versions/r2.2/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output): 1-D. The `N` values that are operated on.\n\n\u003cbr /\u003e\n\n| ### Constructors and Destructors ||\n|---|---|\n| [SparseDenseCwiseAdd](#classtensorflow_1_1ops_1_1_sparse_dense_cwise_add_1a40c54ec3d21552370675a287e1998c0f)`(const ::`[tensorflow::Scope](/versions/r2.2/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r2.2/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` sp_indices, ::`[tensorflow::Input](/versions/r2.2/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` sp_values, ::`[tensorflow::Input](/versions/r2.2/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` sp_shape, ::`[tensorflow::Input](/versions/r2.2/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` dense)` ||\n\n| ### Public attributes ||\n|----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|\n| [operation](#classtensorflow_1_1ops_1_1_sparse_dense_cwise_add_1a72eb8f04e1ba3079957c50afaaa13e79) | [Operation](/versions/r2.2/api_docs/cc/class/tensorflow/operation#classtensorflow_1_1_operation) |\n| [output](#classtensorflow_1_1ops_1_1_sparse_dense_cwise_add_1afe9875882370618c9e8b76e5d1dccb26) | `::`[tensorflow::Output](/versions/r2.2/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n\n| ### Public functions ||\n|----------------------------------------------------------------------------------------------------------------------------------|------------------------|\n| [node](#classtensorflow_1_1ops_1_1_sparse_dense_cwise_add_1a4e49f5451389b499b3f51dfeb39146b6)`() const ` | `::tensorflow::Node *` |\n| [operator::tensorflow::Input](#classtensorflow_1_1ops_1_1_sparse_dense_cwise_add_1ac05df51f21a0dc708e8ab33c853e5d6c)`() const ` | ` ` ` ` |\n| [operator::tensorflow::Output](#classtensorflow_1_1ops_1_1_sparse_dense_cwise_add_1af0582cc0d8c6d71b9de9e50358f27392)`() const ` | ` ` ` ` |\n\nPublic attributes\n-----------------\n\n### operation\n\n```text\nOperation operation\n``` \n\n### output\n\n```text\n::tensorflow::Output output\n``` \n\nPublic functions\n----------------\n\n### SparseDenseCwiseAdd\n\n```gdscript\n SparseDenseCwiseAdd(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input sp_indices,\n ::tensorflow::Input sp_values,\n ::tensorflow::Input sp_shape,\n ::tensorflow::Input dense\n)\n``` \n\n### node\n\n```gdscript\n::tensorflow::Node * node() const \n``` \n\n### operator::tensorflow::Input\n\n```gdscript\n operator::tensorflow::Input() const \n``` \n\n### operator::tensorflow::Output\n\n```gdscript\n operator::tensorflow::Output() const \n```"]]