컬렉션을 사용해 정리하기
내 환경설정을 기준으로 콘텐츠를 저장하고 분류하세요.
#include <nn_ops.h>
입력에 대한 3차원 컨벌루션의 기울기를 계산합니다.
요약
인수:
- 범위: 범위 개체
- input_sizes:
input
의 텐서 형태를 나타내는 정수 벡터입니다. 여기서 input
5차원 [batch, depth, rows, cols, in_channels]
텐서입니다. - 필터: 모양
[depth, rows, cols, in_channels, out_channels]
. in_channels
input
과 filter
사이에서 일치해야 합니다. - out_backprop:
[batch, out_depth, out_rows, out_cols, out_channels]
모양의 역전파 신호. - strides: 길이가 5인 1차원 텐서.
input
의 각 차원에 대한 슬라이딩 윈도우의 보폭입니다. strides[0] = strides[4] = 1
이어야 합니다. - padding: 사용할 패딩 알고리즘 유형입니다.
선택적 속성( Attrs
참조):
- data_format: 입력 및 출력 데이터의 데이터 형식입니다. 기본 형식 "NDHWC"를 사용하면 데이터가 [batch, in_length, in_height, in_width, in_channels] 순서로 저장됩니다. 또는 형식이 "NCDHW"일 수 있으며 데이터 저장 순서는 [batch, in_channels, in_length, in_height, in_width]입니다.
- 팽창: 길이가 5인 1차원 텐서.
input
의 각 차원에 대한 팽창 인자입니다. k > 1로 설정되면 해당 차원의 각 필터 요소 사이에 k-1개의 건너뛴 셀이 있게 됩니다. 차원 순서는 data_format
값에 따라 결정됩니다. 자세한 내용은 위를 참조하세요. 배치 차원과 깊이 차원의 팽창은 1이어야 합니다.
보고:
생성자와 소멸자 |
---|
Conv3DBackpropInputV2 (const :: tensorflow::Scope & scope, :: tensorflow::Input input_sizes, :: tensorflow::Input filter, :: tensorflow::Input out_backprop, const gtl::ArraySlice< int > & strides, StringPiece padding)
|
Conv3DBackpropInputV2 (const :: tensorflow::Scope & scope, :: tensorflow::Input input_sizes, :: tensorflow::Input filter, :: tensorflow::Input out_backprop, const gtl::ArraySlice< int > & strides, StringPiece padding, const Conv3DBackpropInputV2::Attrs & attrs) |
공개 속성
공공 기능
공개 정적 함수
달리 명시되지 않는 한 이 페이지의 콘텐츠에는 Creative Commons Attribution 4.0 라이선스에 따라 라이선스가 부여되며, 코드 샘플에는 Apache 2.0 라이선스에 따라 라이선스가 부여됩니다. 자세한 내용은 Google Developers 사이트 정책을 참조하세요. 자바는 Oracle 및/또는 Oracle 계열사의 등록 상표입니다.
최종 업데이트: 2025-07-26(UTC)
[null,null,["최종 업데이트: 2025-07-26(UTC)"],[],[],null,["# tensorflow::ops::Conv3DBackpropInputV2 Class Reference\n\ntensorflow::ops::Conv3DBackpropInputV2\n======================================\n\n`#include \u003cnn_ops.h\u003e`\n\nComputes the gradients of 3-D convolution with respect to the input.\n\nSummary\n-------\n\nArguments:\n\n- scope: A [Scope](/versions/r2.3/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope) object\n- input_sizes: An integer vector representing the tensor shape of `input`, where `input` is a 5-D `[batch, depth, rows, cols, in_channels]` tensor.\n- filter: Shape `[depth, rows, cols, in_channels, out_channels]`. `in_channels` must match between `input` and `filter`.\n- out_backprop: Backprop signal of shape `[batch, out_depth, out_rows, out_cols, out_channels]`.\n- strides: 1-D tensor of length 5. The stride of the sliding window for each dimension of `input`. Must have `strides[0] = strides[4] = 1`.\n- padding: The type of padding algorithm to use.\n\n\u003cbr /\u003e\n\nOptional attributes (see [Attrs](/versions/r2.3/api_docs/cc/struct/tensorflow/ops/conv3-d-backprop-input-v2/attrs#structtensorflow_1_1ops_1_1_conv3_d_backprop_input_v2_1_1_attrs)):\n\n- data_format: The data format of the input and output data. With the default format \"NDHWC\", the data is stored in the order of: \\[batch, in_depth, in_height, in_width, in_channels\\]. Alternatively, the format could be \"NCDHW\", the data storage order is: \\[batch, in_channels, in_depth, in_height, in_width\\].\n- dilations: 1-D tensor of length 5. The dilation factor for each dimension of `input`. If set to k \\\u003e 1, there will be k-1 skipped cells between each filter element on that dimension. The dimension order is determined by the value of `data_format`, see above for details. Dilations in the batch and depth dimensions must be 1.\n\n\u003cbr /\u003e\n\nReturns:\n\n- [Output](/versions/r2.3/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output): The output tensor.\n\n\u003cbr /\u003e\n\n| ### Constructors and Destructors ||\n|---|---|\n| [Conv3DBackpropInputV2](#classtensorflow_1_1ops_1_1_conv3_d_backprop_input_v2_1aaae19e097fea9d7fc6f815e20faaccd6)`(const ::`[tensorflow::Scope](/versions/r2.3/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r2.3/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` input_sizes, ::`[tensorflow::Input](/versions/r2.3/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` filter, ::`[tensorflow::Input](/versions/r2.3/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` out_backprop, const gtl::ArraySlice\u003c int \u003e & strides, StringPiece padding)` ||\n| [Conv3DBackpropInputV2](#classtensorflow_1_1ops_1_1_conv3_d_backprop_input_v2_1a5c69778ddcd70862d70f7d3630d179c3)`(const ::`[tensorflow::Scope](/versions/r2.3/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r2.3/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` input_sizes, ::`[tensorflow::Input](/versions/r2.3/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` filter, ::`[tensorflow::Input](/versions/r2.3/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` out_backprop, const gtl::ArraySlice\u003c int \u003e & strides, StringPiece padding, const `[Conv3DBackpropInputV2::Attrs](/versions/r2.3/api_docs/cc/struct/tensorflow/ops/conv3-d-backprop-input-v2/attrs#structtensorflow_1_1ops_1_1_conv3_d_backprop_input_v2_1_1_attrs)` & attrs)` ||\n\n| ### Public attributes ||\n|-------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|\n| [operation](#classtensorflow_1_1ops_1_1_conv3_d_backprop_input_v2_1a67a6ca650c6870d418f1fdd658f3fa6b) | [Operation](/versions/r2.3/api_docs/cc/class/tensorflow/operation#classtensorflow_1_1_operation) |\n| [output](#classtensorflow_1_1ops_1_1_conv3_d_backprop_input_v2_1af0d983aaf022b911e25e9f0615b62c20) | `::`[tensorflow::Output](/versions/r2.3/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n\n| ### Public functions ||\n|-------------------------------------------------------------------------------------------------------------------------------------|------------------------|\n| [node](#classtensorflow_1_1ops_1_1_conv3_d_backprop_input_v2_1adb36b7921921ed6c8a2684a8df5cc0ae)`() const ` | `::tensorflow::Node *` |\n| [operator::tensorflow::Input](#classtensorflow_1_1ops_1_1_conv3_d_backprop_input_v2_1a0c617c40ac75a3540b1280f1e02147ed)`() const ` | ` ` ` ` |\n| [operator::tensorflow::Output](#classtensorflow_1_1ops_1_1_conv3_d_backprop_input_v2_1a8b8868a10a3fac1cb6623b75a7bd556d)`() const ` | ` ` ` ` |\n\n| ### Public static functions ||\n|-------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|\n| [DataFormat](#classtensorflow_1_1ops_1_1_conv3_d_backprop_input_v2_1a5a0f9e531569a6645dc6eb72894476c5)`(StringPiece x)` | [Attrs](/versions/r2.3/api_docs/cc/struct/tensorflow/ops/conv3-d-backprop-input-v2/attrs#structtensorflow_1_1ops_1_1_conv3_d_backprop_input_v2_1_1_attrs) |\n| [Dilations](#classtensorflow_1_1ops_1_1_conv3_d_backprop_input_v2_1a7c96359abb43990fc21d1cf52f468a1b)`(const gtl::ArraySlice\u003c int \u003e & x)` | [Attrs](/versions/r2.3/api_docs/cc/struct/tensorflow/ops/conv3-d-backprop-input-v2/attrs#structtensorflow_1_1ops_1_1_conv3_d_backprop_input_v2_1_1_attrs) |\n\n| ### Structs ||\n|-----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| [tensorflow::ops::Conv3DBackpropInputV2::Attrs](/versions/r2.3/api_docs/cc/struct/tensorflow/ops/conv3-d-backprop-input-v2/attrs) | Optional attribute setters for [Conv3DBackpropInputV2](/versions/r2.3/api_docs/cc/class/tensorflow/ops/conv3-d-backprop-input-v2#classtensorflow_1_1ops_1_1_conv3_d_backprop_input_v2). |\n\nPublic attributes\n-----------------\n\n### operation\n\n```text\nOperation operation\n``` \n\n### output\n\n```text\n::tensorflow::Output output\n``` \n\nPublic functions\n----------------\n\n### Conv3DBackpropInputV2\n\n```gdscript\n Conv3DBackpropInputV2(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input input_sizes,\n ::tensorflow::Input filter,\n ::tensorflow::Input out_backprop,\n const gtl::ArraySlice\u003c int \u003e & strides,\n StringPiece padding\n)\n``` \n\n### Conv3DBackpropInputV2\n\n```gdscript\n Conv3DBackpropInputV2(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input input_sizes,\n ::tensorflow::Input filter,\n ::tensorflow::Input out_backprop,\n const gtl::ArraySlice\u003c int \u003e & strides,\n StringPiece padding,\n const Conv3DBackpropInputV2::Attrs & attrs\n)\n``` \n\n### node\n\n```gdscript\n::tensorflow::Node * node() const \n``` \n\n### operator::tensorflow::Input\n\n```gdscript\n operator::tensorflow::Input() const \n``` \n\n### operator::tensorflow::Output\n\n```gdscript\n operator::tensorflow::Output() const \n``` \n\nPublic static functions\n-----------------------\n\n### DataFormat\n\n```text\nAttrs DataFormat(\n StringPiece x\n)\n``` \n\n### Dilations\n\n```gdscript\nAttrs Dilations(\n const gtl::ArraySlice\u003c int \u003e & x\n)\n```"]]