コレクションでコンテンツを整理
必要に応じて、コンテンツの保存と分類を行います。
#include <array_ops.h>
images
からpatches
を抽出し、「深度」出力次元に配置します。
まとめ
引数:
- スコープ:スコープオブジェクト
- 画像: 形状
[batch, in_rows, in_cols, depth]
の 4 次元テンソル。 - ksizes:
images
の各次元のスライディング ウィンドウのサイズ。 - ストライド: 2 つの連続するパッチの中心が画像内でどのくらい離れているか。
[1, stride_rows, stride_cols, 1]
である必要があります。 - rate:
[1, rate_rows, rate_cols, 1]
である必要があります。これは入力ストライドであり、2 つの連続するパッチ サンプルが入力内でどのくらい離れているかを指定します。 patch_sizes_eff = patch_sizes + (patch_sizes - 1) * (rates - 1)
を使用してパッチを抽出し、その後にrates
の係数で空間的にサブサンプリングすることと同じです。これは、拡張された (別名 Atrous) 畳み込みのrate
に相当します。 - padding: 使用するパディング アルゴリズムのタイプ。
戻り値:
-
Output
: 「深さ」次元でベクトル化されたサイズksize_rows x ksize_cols x depth
の画像パッチを含む形状[batch, out_rows, out_cols, ksize_rows * ksize_cols * depth]
4 次元テンソル。 out_rows
とout_cols
出力パッチの次元であることに注意してください。
パブリック属性
公共機能
特に記載のない限り、このページのコンテンツはクリエイティブ・コモンズの表示 4.0 ライセンスにより使用許諾されます。コードサンプルは Apache 2.0 ライセンスにより使用許諾されます。詳しくは、Google Developers サイトのポリシーをご覧ください。Java は Oracle および関連会社の登録商標です。
最終更新日 2025-07-27 UTC。
[null,null,["最終更新日 2025-07-27 UTC。"],[],[],null,["# tensorflow::ops::ExtractImagePatches Class Reference\n\ntensorflow::ops::ExtractImagePatches\n====================================\n\n`#include \u003carray_ops.h\u003e`\n\nExtract `patches` from `images` and put them in the \"depth\" output dimension.\n\nSummary\n-------\n\nArguments:\n\n- scope: A [Scope](/versions/r2.3/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope) object\n- images: 4-D [Tensor](/versions/r2.3/api_docs/cc/class/tensorflow/tensor#classtensorflow_1_1_tensor) with shape `[batch, in_rows, in_cols, depth]`.\n- ksizes: The size of the sliding window for each dimension of `images`.\n- strides: How far the centers of two consecutive patches are in the images. Must be: `[1, stride_rows, stride_cols, 1]`.\n- rates: Must be: `[1, rate_rows, rate_cols, 1]`. This is the input stride, specifying how far two consecutive patch samples are in the input. Equivalent to extracting patches with `patch_sizes_eff = patch_sizes + (patch_sizes - 1) * (rates - 1)`, followed by subsampling them spatially by a factor of `rates`. This is equivalent to `rate` in dilated (a.k.a. Atrous) convolutions.\n- padding: The type of padding algorithm to use.\n\n\u003cbr /\u003e\n\nReturns:\n\n- [Output](/versions/r2.3/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output): 4-D [Tensor](/versions/r2.3/api_docs/cc/class/tensorflow/tensor#classtensorflow_1_1_tensor) with shape `[batch, out_rows, out_cols, ksize_rows * ksize_cols * depth]` containing image patches with size `ksize_rows x ksize_cols x depth` vectorized in the \"depth\" dimension. Note `out_rows` and `out_cols` are the dimensions of the output patches.\n\n\u003cbr /\u003e\n\n| ### Constructors and Destructors ||\n|---|---|\n| [ExtractImagePatches](#classtensorflow_1_1ops_1_1_extract_image_patches_1a48a27e59bf001d9d0599c4a4ad3abcf9)`(const ::`[tensorflow::Scope](/versions/r2.3/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r2.3/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` images, const gtl::ArraySlice\u003c int \u003e & ksizes, const gtl::ArraySlice\u003c int \u003e & strides, const gtl::ArraySlice\u003c int \u003e & rates, StringPiece padding)` ||\n\n| ### Public attributes ||\n|---------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|\n| [operation](#classtensorflow_1_1ops_1_1_extract_image_patches_1a20f65de6816816f98d46af224137110d) | [Operation](/versions/r2.3/api_docs/cc/class/tensorflow/operation#classtensorflow_1_1_operation) |\n| [patches](#classtensorflow_1_1ops_1_1_extract_image_patches_1a282b671f1a0d52422cd35c75d6819ee1) | `::`[tensorflow::Output](/versions/r2.3/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n\n| ### Public functions ||\n|---------------------------------------------------------------------------------------------------------------------------------|------------------------|\n| [node](#classtensorflow_1_1ops_1_1_extract_image_patches_1a812a245b3efe85c0003da911be95b891)`() const ` | `::tensorflow::Node *` |\n| [operator::tensorflow::Input](#classtensorflow_1_1ops_1_1_extract_image_patches_1a3dbc12d46ac43f4e5cb6868030310880)`() const ` | ` ` ` ` |\n| [operator::tensorflow::Output](#classtensorflow_1_1ops_1_1_extract_image_patches_1a7a11be91c9fd8c6b3c5d48ae30630a18)`() const ` | ` ` ` ` |\n\nPublic attributes\n-----------------\n\n### operation\n\n```text\nOperation operation\n``` \n\n### patches\n\n```text\n::tensorflow::Output patches\n``` \n\nPublic functions\n----------------\n\n### ExtractImagePatches\n\n```gdscript\n ExtractImagePatches(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input images,\n const gtl::ArraySlice\u003c int \u003e & ksizes,\n const gtl::ArraySlice\u003c int \u003e & strides,\n const gtl::ArraySlice\u003c int \u003e & rates,\n StringPiece padding\n)\n``` \n\n### node\n\n```gdscript\n::tensorflow::Node * node() const \n``` \n\n### operator::tensorflow::Input\n\n```gdscript\n operator::tensorflow::Input() const \n``` \n\n### operator::tensorflow::Output\n\n```gdscript\n operator::tensorflow::Output() const \n```"]]