コレクションでコンテンツを整理
必要に応じて、コンテンツの保存と分類を行います。
テンソルフロー::作戦:: V2 を保存
#include <io_ops.h>
テンソルを V2 チェックポイント形式で保存します。
まとめ
デフォルトでは、名前付きテンソルを完全に保存します。呼び出し元が完全なテンソルの特定のスライスを保存したい場合、「shape_and_slices」は空ではない文字列であり、それに応じて整形式である必要があります。
引数:
- スコープ:スコープオブジェクト
- prefix: 単一の要素が必要です。テンソルを書き込む V2 チェックポイントのプレフィックス。
- tensor_names: 形状 {N}。保存するテンソルの名前。
- shape_and_slices: 形状 {N}。保存するテンソルのスライス仕様。空の文字列は、分割されていないテンソルであることを示します。
- テンソル: 保存する
N
テンソル。
戻り値:
パブリック属性
公共機能
演算子::tensorflow::オペレーション
operator::tensorflow::Operation() const
特に記載のない限り、このページのコンテンツはクリエイティブ・コモンズの表示 4.0 ライセンスにより使用許諾されます。コードサンプルは Apache 2.0 ライセンスにより使用許諾されます。詳しくは、Google Developers サイトのポリシーをご覧ください。Java は Oracle および関連会社の登録商標です。
最終更新日 2025-07-26 UTC。
[null,null,["最終更新日 2025-07-26 UTC。"],[],[],null,["# tensorflow::ops::SaveV2 Class Reference\n\ntensorflow::ops::SaveV2\n=======================\n\n`#include \u003cio_ops.h\u003e`\n\nSaves tensors in V2 checkpoint format.\n\nSummary\n-------\n\nBy default, saves the named tensors in full. If the caller wishes to save specific slices of full tensors, \"shape_and_slices\" should be non-empty strings and correspondingly well-formed.\n\nArguments:\n\n- scope: A [Scope](/versions/r2.3/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope) object\n- prefix: Must have a single element. The prefix of the V2 checkpoint to which we write the tensors.\n- tensor_names: shape {N}. The names of the tensors to be saved.\n- shape_and_slices: shape {N}. The slice specs of the tensors to be saved. [Empty](/versions/r2.3/api_docs/cc/class/tensorflow/ops/empty#classtensorflow_1_1ops_1_1_empty) strings indicate that they are non-partitioned tensors.\n- tensors: `N` tensors to save.\n\n\u003cbr /\u003e\n\nReturns:\n\n- the created [Operation](/versions/r2.3/api_docs/cc/class/tensorflow/operation#classtensorflow_1_1_operation)\n\n\u003cbr /\u003e\n\n| ### Constructors and Destructors ||\n|---|---|\n| [SaveV2](#classtensorflow_1_1ops_1_1_save_v2_1a1ffd5c412f4b1620ffbe3c2a4a8b5f56)`(const ::`[tensorflow::Scope](/versions/r2.3/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r2.3/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` prefix, ::`[tensorflow::Input](/versions/r2.3/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` tensor_names, ::`[tensorflow::Input](/versions/r2.3/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` shape_and_slices, ::`[tensorflow::InputList](/versions/r2.3/api_docs/cc/class/tensorflow/input-list#classtensorflow_1_1_input_list)` tensors)` ||\n\n| ### Public attributes ||\n|-------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|\n| [operation](#classtensorflow_1_1ops_1_1_save_v2_1aef163a3bab67f5acd5fade77d3998b72) | [Operation](/versions/r2.3/api_docs/cc/class/tensorflow/operation#classtensorflow_1_1_operation) |\n\n| ### Public functions ||\n|----------------------------------------------------------------------------------------------------------------------|---------|\n| [operator::tensorflow::Operation](#classtensorflow_1_1ops_1_1_save_v2_1ae9919485ae23077f045387f5509adb41)`() const ` | ` ` ` ` |\n\nPublic attributes\n-----------------\n\n### operation\n\n```text\nOperation operation\n``` \n\nPublic functions\n----------------\n\n### SaveV2\n\n```gdscript\n SaveV2(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input prefix,\n ::tensorflow::Input tensor_names,\n ::tensorflow::Input shape_and_slices,\n ::tensorflow::InputList tensors\n)\n``` \n\n### operator::tensorflow::Operation\n\n```gdscript\n operator::tensorflow::Operation() const \n```"]]