segment_ids : un tenseur 1D dont la taille est égale à la taille de la première dimension de data . Les valeurs doivent être triées et peuvent être répétées.
Retours :
Output : A la même forme que les données, sauf pour la dimension 0 qui a la taille k , le nombre de segments.
Sauf indication contraire, le contenu de cette page est régi par une licence Creative Commons Attribution 4.0, et les échantillons de code sont régis par une licence Apache 2.0. Pour en savoir plus, consultez les Règles du site Google Developers. Java est une marque déposée d'Oracle et/ou de ses sociétés affiliées.
Dernière mise à jour le 2025/07/26 (UTC).
[null,null,["Dernière mise à jour le 2025/07/26 (UTC)."],[],[],null,["# tensorflow::ops::SegmentMin Class Reference\n\ntensorflow::ops::SegmentMin\n===========================\n\n`#include \u003cmath_ops.h\u003e`\n\nComputes the minimum along segments of a tensor.\n\nSummary\n-------\n\nRead [the section on segmentation](https://tensorflow.org/api_docs/python/tf/math#Segmentation) for an explanation of segments.\n\nComputes a tensor such that \\\\(output_i = (data_j)\\\\) where `min` is over `j` such that `segment_ids[j] == i`.\n\nIf the min is empty for a given segment ID `i`, `output[i] = 0`.\n\n\n\u003cbr /\u003e\n\nFor example:\n\n\n```gdscript\nc = tf.constant([[1,2,3,4], [4, 3, 2, 1], [5,6,7,8]])\ntf.segment_min(c, tf.constant([0, 0, 1]))\n# ==\u003e [[1, 2, 2, 1],\n# [5, 6, 7, 8]]\n```\n\n\u003cbr /\u003e\n\nArguments:\n\n- scope: A [Scope](/versions/r2.3/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope) object\n- segment_ids: A 1-D tensor whose size is equal to the size of `data`'s first dimension. Values should be sorted and can be repeated.\n\n\u003cbr /\u003e\n\nReturns:\n\n- [Output](/versions/r2.3/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output): Has same shape as data, except for dimension 0 which has size `k`, the number of segments.\n\n\u003cbr /\u003e\n\n| ### Constructors and Destructors ||\n|---|---|\n| [SegmentMin](#classtensorflow_1_1ops_1_1_segment_min_1a3012dce1d5e46fd538083a4543420a89)`(const ::`[tensorflow::Scope](/versions/r2.3/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r2.3/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` data, ::`[tensorflow::Input](/versions/r2.3/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` segment_ids)` ||\n\n| ### Public attributes ||\n|-----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|\n| [operation](#classtensorflow_1_1ops_1_1_segment_min_1a1dd3ab9be4244f9e51ee31f1249735ff) | [Operation](/versions/r2.3/api_docs/cc/class/tensorflow/operation#classtensorflow_1_1_operation) |\n| [output](#classtensorflow_1_1ops_1_1_segment_min_1aa79a959666dedb9e81ae623ed8ba28a8) | `::`[tensorflow::Output](/versions/r2.3/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n\n| ### Public functions ||\n|-----------------------------------------------------------------------------------------------------------------------|------------------------|\n| [node](#classtensorflow_1_1ops_1_1_segment_min_1a0315622df52ece6431d28d99520c1eef)`() const ` | `::tensorflow::Node *` |\n| [operator::tensorflow::Input](#classtensorflow_1_1ops_1_1_segment_min_1aa2819b4005543663b84fe92fcbbec66a)`() const ` | ` ` ` ` |\n| [operator::tensorflow::Output](#classtensorflow_1_1ops_1_1_segment_min_1a479837a013d764ff8d54553f71f32b83)`() const ` | ` ` ` ` |\n\nPublic attributes\n-----------------\n\n### operation\n\n```text\nOperation operation\n``` \n\n### output\n\n```text\n::tensorflow::Output output\n``` \n\nPublic functions\n----------------\n\n### SegmentMin\n\n```gdscript\n SegmentMin(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input data,\n ::tensorflow::Input segment_ids\n)\n``` \n\n### node\n\n```gdscript\n::tensorflow::Node * node() const \n``` \n\n### operator::tensorflow::Input\n\n```gdscript\n operator::tensorflow::Input() const \n``` \n\n### operator::tensorflow::Output\n\n```gdscript\n operator::tensorflow::Output() const \n```"]]