Conozca lo último en aprendizaje automático, IA generativa y más en el
Simposio WiML 2023.
Organiza tus páginas con colecciones
Guarda y categoriza el contenido según tus preferencias.
tensorflow :: operaciones :: SparseApplyRMSProp
#include <training_ops.h>
Actualice '* var' de acuerdo con el algoritmo RMSProp.
Resumen
Tenga en cuenta que en una implementación densa de este algoritmo, ms y mom se actualizarán incluso si el graduado es cero, pero en esta implementación escasa, ms y mom no se actualizarán en iteraciones durante las cuales el grad es cero.
mean_square = decay * mean_square + (1-decay) * gradient ** 2 Delta = learning_rate * gradient / sqrt (mean_square + epsilon)
$$ms <- rho * ms_{t-1} + (1-rho) * grad * grad$$
$$mom <- momentum * mom_{t-1} + lr * grad / sqrt(ms + epsilon)$$
$$var <- var - mom$$
Argumentos:
- alcance: un objeto de alcance
- var: debe ser de una variable ().
- ms: debe ser de una variable ().
- mamá: debe ser de una variable ().
- lr: factor de escala. Debe ser un escalar.
- rho: Tasa de decaimiento. Debe ser un escalar.
- épsilon: Término de cresta. Debe ser un escalar.
- grad: El gradiente.
- índices: Un vector de índices en la primera dimensión de var, ms y mom.
Atributos opcionales (consulte Attrs
):
- use_locking: si es
True
, la actualización de los tensores var, ms y mom está protegida por un bloqueo; de lo contrario, el comportamiento no está definido, pero puede mostrar menos contención.
Devoluciones:
Constructores y Destructores |
---|
SparseApplyRMSProp (const :: tensorflow::Scope & scope, :: tensorflow::Input var, :: tensorflow::Input ms, :: tensorflow::Input mom, :: tensorflow::Input lr, :: tensorflow::Input rho, :: tensorflow::Input momentum, :: tensorflow::Input epsilon, :: tensorflow::Input grad, :: tensorflow::Input indices)
|
SparseApplyRMSProp (const :: tensorflow::Scope & scope, :: tensorflow::Input var, :: tensorflow::Input ms, :: tensorflow::Input mom, :: tensorflow::Input lr, :: tensorflow::Input rho, :: tensorflow::Input momentum, :: tensorflow::Input epsilon, :: tensorflow::Input grad, :: tensorflow::Input indices, const SparseApplyRMSProp::Attrs & attrs) |
Atributos públicos
Funciones publicas
SparseApplyRMSProp
SparseApplyRMSProp(
const ::tensorflow::Scope & scope,
::tensorflow::Input var,
::tensorflow::Input ms,
::tensorflow::Input mom,
::tensorflow::Input lr,
::tensorflow::Input rho,
::tensorflow::Input momentum,
::tensorflow::Input epsilon,
::tensorflow::Input grad,
::tensorflow::Input indices,
const SparseApplyRMSProp::Attrs & attrs
)
nodo
::tensorflow::Node * node() const
operator::tensorflow::Input() const
operador :: tensorflow :: Salida
operator::tensorflow::Output() const
Funciones estáticas públicas
UseLocking
Attrs UseLocking(
bool x
)
Salvo que se indique lo contrario, el contenido de esta página está sujeto a la licencia Atribución 4.0 de Creative Commons, y los ejemplos de código están sujetos a la licencia Apache 2.0. Para obtener más información, consulta las políticas del sitio de Google Developers. Java es una marca registrada de Oracle o sus afiliados.
Última actualización: 2020-06-29 (UTC)
[null,null,["Última actualización: 2020-06-29 (UTC)"],[],[],null,["# tensorflow::ops::SparseApplyRMSProp Class Reference\n\ntensorflow::ops::SparseApplyRMSProp\n===================================\n\n`#include \u003ctraining_ops.h\u003e`\n\nUpdate '\\*var' according to the RMSProp algorithm.\n\nSummary\n-------\n\nNote that in dense implementation of this algorithm, ms and mom will update even if the grad is zero, but in this sparse implementation, ms and mom will not update in iterations during which the grad is zero.\n\nmean_square = decay \\* mean_square + (1-decay) \\* gradient \\*\\* 2 Delta = learning_rate \\* gradient / sqrt(mean_square + epsilon)\n\n\n$$ms \\\u003c- rho \\* ms_{t-1} + (1-rho) \\* grad \\* grad$$ \n$$mom \\\u003c- momentum \\* mom_{t-1} + lr \\* grad / sqrt(ms + epsilon)$$ \n$$var \\\u003c- var - mom$$\n\n\u003cbr /\u003e\n\nArguments:\n\n- scope: A [Scope](/versions/r2.3/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope) object\n- var: Should be from a Variable().\n- ms: Should be from a Variable().\n- mom: Should be from a Variable().\n- lr: Scaling factor. Must be a scalar.\n- rho: Decay rate. Must be a scalar.\n- epsilon: Ridge term. Must be a scalar.\n- grad: The gradient.\n- indices: A vector of indices into the first dimension of var, ms and mom.\n\n\u003cbr /\u003e\n\nOptional attributes (see [Attrs](/versions/r2.3/api_docs/cc/struct/tensorflow/ops/sparse-apply-r-m-s-prop/attrs#structtensorflow_1_1ops_1_1_sparse_apply_r_m_s_prop_1_1_attrs)):\n\n- use_locking: If `True`, updating of the var, ms, and mom tensors is protected by a lock; otherwise the behavior is undefined, but may exhibit less contention.\n\n\u003cbr /\u003e\n\nReturns:\n\n- [Output](/versions/r2.3/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output): Same as \"var\".\n\n\u003cbr /\u003e\n\n| ### Constructors and Destructors ||\n|---|---|\n| [SparseApplyRMSProp](#classtensorflow_1_1ops_1_1_sparse_apply_r_m_s_prop_1a294b9022369ff505c3a86a061d7e1e89)`(const ::`[tensorflow::Scope](/versions/r2.3/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r2.3/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` var, ::`[tensorflow::Input](/versions/r2.3/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` ms, ::`[tensorflow::Input](/versions/r2.3/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` mom, ::`[tensorflow::Input](/versions/r2.3/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` lr, ::`[tensorflow::Input](/versions/r2.3/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` rho, ::`[tensorflow::Input](/versions/r2.3/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` momentum, ::`[tensorflow::Input](/versions/r2.3/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` epsilon, ::`[tensorflow::Input](/versions/r2.3/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` grad, ::`[tensorflow::Input](/versions/r2.3/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` indices)` ||\n| [SparseApplyRMSProp](#classtensorflow_1_1ops_1_1_sparse_apply_r_m_s_prop_1ae7e1961797bdee0ed9c2e05e0c6f5b9a)`(const ::`[tensorflow::Scope](/versions/r2.3/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r2.3/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` var, ::`[tensorflow::Input](/versions/r2.3/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` ms, ::`[tensorflow::Input](/versions/r2.3/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` mom, ::`[tensorflow::Input](/versions/r2.3/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` lr, ::`[tensorflow::Input](/versions/r2.3/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` rho, ::`[tensorflow::Input](/versions/r2.3/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` momentum, ::`[tensorflow::Input](/versions/r2.3/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` epsilon, ::`[tensorflow::Input](/versions/r2.3/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` grad, ::`[tensorflow::Input](/versions/r2.3/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` indices, const `[SparseApplyRMSProp::Attrs](/versions/r2.3/api_docs/cc/struct/tensorflow/ops/sparse-apply-r-m-s-prop/attrs#structtensorflow_1_1ops_1_1_sparse_apply_r_m_s_prop_1_1_attrs)` & attrs)` ||\n\n| ### Public attributes ||\n|-----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|\n| [operation](#classtensorflow_1_1ops_1_1_sparse_apply_r_m_s_prop_1a47820b04ad723a34e536357b737fd52a) | [Operation](/versions/r2.3/api_docs/cc/class/tensorflow/operation#classtensorflow_1_1_operation) |\n| [out](#classtensorflow_1_1ops_1_1_sparse_apply_r_m_s_prop_1a52eae17378a3e495459e1228a85231f1) | `::`[tensorflow::Output](/versions/r2.3/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n\n| ### Public functions ||\n|-----------------------------------------------------------------------------------------------------------------------------------|------------------------|\n| [node](#classtensorflow_1_1ops_1_1_sparse_apply_r_m_s_prop_1aaaa68f0bf1d1ae0d39baabfb6cf7e914)`() const ` | `::tensorflow::Node *` |\n| [operator::tensorflow::Input](#classtensorflow_1_1ops_1_1_sparse_apply_r_m_s_prop_1a3332860de74905325de2385e61f1bf1b)`() const ` | ` ` ` ` |\n| [operator::tensorflow::Output](#classtensorflow_1_1ops_1_1_sparse_apply_r_m_s_prop_1afa85184aa4b370ef02ba3659b7183a1a)`() const ` | ` ` ` ` |\n\n| ### Public static functions ||\n|----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|\n| [UseLocking](#classtensorflow_1_1ops_1_1_sparse_apply_r_m_s_prop_1a0cf09326834a568a3c1cad7cf91129e1)`(bool x)` | [Attrs](/versions/r2.3/api_docs/cc/struct/tensorflow/ops/sparse-apply-r-m-s-prop/attrs#structtensorflow_1_1ops_1_1_sparse_apply_r_m_s_prop_1_1_attrs) |\n\n| ### Structs ||\n|------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| [tensorflow::ops::SparseApplyRMSProp::Attrs](/versions/r2.3/api_docs/cc/struct/tensorflow/ops/sparse-apply-r-m-s-prop/attrs) | Optional attribute setters for [SparseApplyRMSProp](/versions/r2.3/api_docs/cc/class/tensorflow/ops/sparse-apply-r-m-s-prop#classtensorflow_1_1ops_1_1_sparse_apply_r_m_s_prop). |\n\nPublic attributes\n-----------------\n\n### operation\n\n```text\nOperation operation\n``` \n\n### out\n\n```text\n::tensorflow::Output out\n``` \n\nPublic functions\n----------------\n\n### SparseApplyRMSProp\n\n```gdscript\n SparseApplyRMSProp(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input var,\n ::tensorflow::Input ms,\n ::tensorflow::Input mom,\n ::tensorflow::Input lr,\n ::tensorflow::Input rho,\n ::tensorflow::Input momentum,\n ::tensorflow::Input epsilon,\n ::tensorflow::Input grad,\n ::tensorflow::Input indices\n)\n``` \n\n### SparseApplyRMSProp\n\n```gdscript\n SparseApplyRMSProp(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input var,\n ::tensorflow::Input ms,\n ::tensorflow::Input mom,\n ::tensorflow::Input lr,\n ::tensorflow::Input rho,\n ::tensorflow::Input momentum,\n ::tensorflow::Input epsilon,\n ::tensorflow::Input grad,\n ::tensorflow::Input indices,\n const SparseApplyRMSProp::Attrs & attrs\n)\n``` \n\n### node\n\n```gdscript\n::tensorflow::Node * node() const \n``` \n\n### operator::tensorflow::Input\n\n```gdscript\n operator::tensorflow::Input() const \n``` \n\n### operator::tensorflow::Output\n\n```gdscript\n operator::tensorflow::Output() const \n``` \n\nPublic static functions\n-----------------------\n\n### UseLocking\n\n```text\nAttrs UseLocking(\n bool x\n)\n```"]]