Stay organized with collections
Save and categorize content based on your preferences.
tensorflow::
ops::
DeserializeSparse
#include <sparse_ops.h>
Deserialize
SparseTensor
objects.
Summary
The input
serialized_sparse
must have the shape
[?, ?, ..., ?, 3]
where the last dimension stores serialized
SparseTensor
objects and the other N dimensions (N >= 0) correspond to a batch. The ranks of the original
SparseTensor
objects must all match. When the final
SparseTensor
is created, its rank is the rank of the incoming
SparseTensor
objects plus N; the sparse tensors have been concatenated along new dimensions, one for each batch.
The output
SparseTensor
object's shape values for the original dimensions are the max across the input
SparseTensor
objects' shape values for the corresponding dimensions. The new dimensions match the size of the batch.
The input
SparseTensor
objects' indices are assumed ordered in standard lexicographic order. If this is not the case, after this step run
SparseReorder
to restore index ordering.
For example, if the serialized input is a
[2 x 3]
matrix representing two original
SparseTensor
objects:
index = [ 0]
[10]
[20]
values = [1, 2, 3]
shape = [50]
and
index = [ 2]
[10]
values = [4, 5]
shape = [30]
then the final deserialized
SparseTensor
will be:
index = [0 0]
[0 10]
[0 20]
[1 2]
[1 10]
values = [1, 2, 3, 4, 5]
shape = [2 50]
Args:
-
scope: A
Scope
object
-
serialized_sparse: The serialized
SparseTensor
objects. The last dimension must have 3 columns.
-
dtype: The
dtype
of the serialized
SparseTensor
objects.
Returns:
Public attributes
Public functions
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates. Some content is licensed under the numpy license.
Last updated 2021-05-14 UTC.
[null,null,["Last updated 2021-05-14 UTC."],[],[],null,["# tensorflow::ops::DeserializeSparse Class Reference\n\ntensorflow::\nops::\nDeserializeSparse\n====================================\n\n`\n#include \u003csparse_ops.h\u003e\n`\n\n\nDeserialize\n`\nSparseTensor\n`\nobjects.\n\nSummary\n-------\n\n\nThe input\n`\nserialized_sparse\n`\nmust have the shape\n`\n[?, ?, ..., ?, 3]\n`\nwhere the last dimension stores serialized\n`\nSparseTensor\n`\nobjects and the other N dimensions (N \\\u003e= 0) correspond to a batch. The ranks of the original\n`\nSparseTensor\n`\nobjects must all match. When the final\n`\nSparseTensor\n`\nis created, its rank is the rank of the incoming\n`\nSparseTensor\n`\nobjects plus N; the sparse tensors have been concatenated along new dimensions, one for each batch.\n\n\nThe output\n`\nSparseTensor\n`\nobject's shape values for the original dimensions are the max across the input\n`\nSparseTensor\n`\nobjects' shape values for the corresponding dimensions. The new dimensions match the size of the batch.\n\n\nThe input\n`\nSparseTensor\n`\nobjects' indices are assumed ordered in standard lexicographic order. If this is not the case, after this step run\n`\n`[SparseReorder](/versions/r2.5/api_docs/cc/class/tensorflow/ops/sparse-reorder#classtensorflow_1_1ops_1_1_sparse_reorder)`\n`\nto restore index ordering.\n\n\nFor example, if the serialized input is a\n`\n[2 x 3]\n`\nmatrix representing two original\n`\nSparseTensor\n`\nobjects: \n\n```text\nindex = [ 0]\n [10]\n [20]\nvalues = [1, 2, 3]\nshape = [50]\n```\n\n\u003cbr /\u003e\n\n\nand \n\n```text\nindex = [ 2]\n [10]\nvalues = [4, 5]\nshape = [30]\n```\n\n\u003cbr /\u003e\n\n\nthen the final deserialized\n`\nSparseTensor\n`\nwill be: \n\n```text\nindex = [0 0]\n [0 10]\n [0 20]\n [1 2]\n [1 10]\nvalues = [1, 2, 3, 4, 5]\nshape = [2 50]\n```\n\n\u003cbr /\u003e\n\n\nArgs:\n\n- scope: A [Scope](/versions/r2.5/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope) object\n- serialized_sparse: The serialized `\n SparseTensor\n ` objects. The last dimension must have 3 columns.\n- dtype: The `\n dtype\n ` of the serialized `\n SparseTensor\n ` objects.\n\n\u003cbr /\u003e\n\n\nReturns:\n\n- `\n `[Output](/versions/r2.5/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output)`\n ` sparse_indices\n- `\n `[Output](/versions/r2.5/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output)`\n ` sparse_values\n- `\n `[Output](/versions/r2.5/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output)`\n ` sparse_shape\n\n\u003cbr /\u003e\n\n| ### Constructors and Destructors ||\n|---|---|\n| ` `[DeserializeSparse](#classtensorflow_1_1ops_1_1_deserialize_sparse_1a023794d9b956960ff8d7189e5e3feec5)` (const :: `[tensorflow::Scope](/versions/r2.5/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, :: `[tensorflow::Input](/versions/r2.5/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` serialized_sparse, DataType dtype) ` ||\n\n| ### Public attributes ||\n|-----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|\n| ` `[operation](#classtensorflow_1_1ops_1_1_deserialize_sparse_1abdd692db872e045ede9e84be66b35bc3)` ` | ` `[Operation](/versions/r2.5/api_docs/cc/class/tensorflow/operation#classtensorflow_1_1_operation)` ` |\n| ` `[sparse_indices](#classtensorflow_1_1ops_1_1_deserialize_sparse_1acdaf19772a1be03384f76ac4e07f6aaf)` ` | ` :: `[tensorflow::Output](/versions/r2.5/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output)` ` |\n| ` `[sparse_shape](#classtensorflow_1_1ops_1_1_deserialize_sparse_1a86bbd4ffa415bb68db5fa2f1e76e7de5)` ` | ` :: `[tensorflow::Output](/versions/r2.5/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output)` ` |\n| ` `[sparse_values](#classtensorflow_1_1ops_1_1_deserialize_sparse_1a303201bfe16885e2cef2b115049d005e)` ` | ` :: `[tensorflow::Output](/versions/r2.5/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output)` ` |\n\nPublic attributes\n-----------------\n\n### operation\n\n```text\nOperation operation\n``` \n\n### sparse_indices\n\n```scdoc\n::tensorflow::Output sparse_indices\n``` \n\n### sparse_shape\n\n```scdoc\n::tensorflow::Output sparse_shape\n``` \n\n### sparse_values\n\n```scdoc\n::tensorflow::Output sparse_values\n``` \n\nPublic functions\n----------------\n\n### DeserializeSparse\n\n```gdscript\n DeserializeSparse(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input serialized_sparse,\n DataType dtype\n)\n```"]]