컬렉션을 사용해 정리하기
내 환경설정을 기준으로 콘텐츠를 저장하고 분류하세요.
텐서플로우:: 작전:: 양자화Relu
#include <nn_ops.h>
양자화된 정류 선형 계산: max(features, 0)
요약
인수:
- 범위: 범위 개체
- min_features: 가장 낮은 양자화된 값이 나타내는 부동 소수점 값입니다.
- max_features: 가장 높은 양자화된 값이 나타내는 부동 소수점 값입니다.
보고:
-
Output
활성화: "기능"과 동일한 출력 형태를 갖습니다. -
Output
min_activations: 가장 낮은 양자화된 값이 나타내는 부동 소수점 값입니다. -
Output
max_activations: 가장 높은 양자화된 값이 나타내는 부동 소수점 값입니다.
공개 속성
공공 기능
공개 정적 함수
출력 유형
Attrs OutType(
DataType x
)
달리 명시되지 않는 한 이 페이지의 콘텐츠에는 Creative Commons Attribution 4.0 라이선스에 따라 라이선스가 부여되며, 코드 샘플에는 Apache 2.0 라이선스에 따라 라이선스가 부여됩니다. 자세한 내용은 Google Developers 사이트 정책을 참조하세요. 자바는 Oracle 및/또는 Oracle 계열사의 등록 상표입니다.
최종 업데이트: 2025-07-25(UTC)
[null,null,["최종 업데이트: 2025-07-25(UTC)"],[],[],null,["# tensorflow::ops::QuantizedRelu Class Reference\n\ntensorflow::ops::QuantizedRelu\n==============================\n\n`#include \u003cnn_ops.h\u003e`\n\nComputes Quantized Rectified Linear: `max(features, 0)`\n\nSummary\n-------\n\nArguments:\n\n- scope: A [Scope](/versions/r1.15/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope) object\n- min_features: The float value that the lowest quantized value represents.\n- max_features: The float value that the highest quantized value represents.\n\n\u003cbr /\u003e\n\nReturns:\n\n- [Output](/versions/r1.15/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) activations: Has the same output shape as \"features\".\n- [Output](/versions/r1.15/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) min_activations: The float value that the lowest quantized value represents.\n- [Output](/versions/r1.15/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) max_activations: The float value that the highest quantized value represents.\n\n\u003cbr /\u003e\n\n| ### Constructors and Destructors ||\n|---|---|\n| [QuantizedRelu](#classtensorflow_1_1ops_1_1_quantized_relu_1a5e0ded07ba3f7153a1fd2e8c4c9c0216)`(const ::`[tensorflow::Scope](/versions/r1.15/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` features, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` min_features, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` max_features)` ||\n| [QuantizedRelu](#classtensorflow_1_1ops_1_1_quantized_relu_1a0ab4441e9d7f69037c5025e86c8f788f)`(const ::`[tensorflow::Scope](/versions/r1.15/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` features, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` min_features, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` max_features, const `[QuantizedRelu::Attrs](/versions/r1.15/api_docs/cc/struct/tensorflow/ops/quantized-relu/attrs#structtensorflow_1_1ops_1_1_quantized_relu_1_1_attrs)` & attrs)` ||\n\n| ### Public attributes ||\n|--------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|\n| [activations](#classtensorflow_1_1ops_1_1_quantized_relu_1a02d03a3b17e4effc4ecfacc918af94aa) | `::`[tensorflow::Output](/versions/r1.15/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n| [max_activations](#classtensorflow_1_1ops_1_1_quantized_relu_1a4d8de642f5ac09db0028d525ac65ac20) | `::`[tensorflow::Output](/versions/r1.15/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n| [min_activations](#classtensorflow_1_1ops_1_1_quantized_relu_1a284154376c40954f461a7f12337dda9c) | `::`[tensorflow::Output](/versions/r1.15/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n| [operation](#classtensorflow_1_1ops_1_1_quantized_relu_1a43b2894a63c8973dff9ba7300efed1c7) | [Operation](/versions/r1.15/api_docs/cc/class/tensorflow/operation#classtensorflow_1_1_operation) |\n\n| ### Public static functions ||\n|--------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|\n| [OutType](#classtensorflow_1_1ops_1_1_quantized_relu_1aea716e4dc2073aaa2cf530fa34709491)`(DataType x)` | [Attrs](/versions/r1.15/api_docs/cc/struct/tensorflow/ops/quantized-relu/attrs#structtensorflow_1_1ops_1_1_quantized_relu_1_1_attrs) |\n\n| ### Structs ||\n|-----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| [tensorflow::ops::QuantizedRelu::Attrs](/versions/r1.15/api_docs/cc/struct/tensorflow/ops/quantized-relu/attrs) | Optional attribute setters for [QuantizedRelu](/versions/r1.15/api_docs/cc/class/tensorflow/ops/quantized-relu#classtensorflow_1_1ops_1_1_quantized_relu). |\n\nPublic attributes\n-----------------\n\n### activations\n\n```text\n::tensorflow::Output activations\n``` \n\n### max_activations\n\n```scdoc\n::tensorflow::Output max_activations\n``` \n\n### min_activations\n\n```scdoc\n::tensorflow::Output min_activations\n``` \n\n### operation\n\n```text\nOperation operation\n``` \n\nPublic functions\n----------------\n\n### QuantizedRelu\n\n```gdscript\n QuantizedRelu(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input features,\n ::tensorflow::Input min_features,\n ::tensorflow::Input max_features\n)\n``` \n\n### QuantizedRelu\n\n```gdscript\n QuantizedRelu(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input features,\n ::tensorflow::Input min_features,\n ::tensorflow::Input max_features,\n const QuantizedRelu::Attrs & attrs\n)\n``` \n\nPublic static functions\n-----------------------\n\n### OutType\n\n```text\nAttrs OutType(\n DataType x\n)\n```"]]