컬렉션을 사용해 정리하기
내 환경설정을 기준으로 콘텐츠를 저장하고 분류하세요.
텐서플로우:: 작전:: 자원적용아담
#include <training_ops.h>
Adam 알고리즘에 따라 '*var'를 업데이트합니다.
요약
$$lr_t := {learning_rate} * {1 - beta_2^t} / (1 - beta_1^t)$$ $$m_t := beta_1 * m_{t-1} + (1 - beta_1) * g$$ $$v_t := beta_2 * v_{t-1} + (1 - beta_2) * g * g$$ $$variable := variable - lr_t * m_t / ({v_t} + )$$
인수:
- 범위: 범위 개체
- var: Variable()에서 가져와야 합니다.
- m: Variable()에서 가져와야 합니다.
- v: Variable()에서 가져와야 합니다.
- beta1_power: 스칼라여야 합니다.
- beta2_power: 스칼라여야 합니다.
- lr: 스케일링 팩터. 스칼라여야 합니다.
- 베타1: 모멘텀 요인. 스칼라여야 합니다.
- 베타2: 모멘텀 요인. 스칼라여야 합니다.
- 엡실론: 능선 항. 스칼라여야 합니다.
- grad: 그라데이션입니다.
선택적 속성( Attrs
참조):
- use_locking:
True
이면 var, m, v 텐서의 업데이트가 잠금으로 보호됩니다. 그렇지 않으면 동작이 정의되지 않지만 경합이 덜 나타날 수 있습니다. - use_nesterov:
True
인 경우 네스테로프 업데이트를 사용합니다.
보고:
생성자와 소멸자 |
---|
ResourceApplyAdam (const :: tensorflow::Scope & scope, :: tensorflow::Input var, :: tensorflow::Input m, :: tensorflow::Input v, :: tensorflow::Input beta1_power, :: tensorflow::Input beta2_power, :: tensorflow::Input lr, :: tensorflow::Input beta1, :: tensorflow::Input beta2, :: tensorflow::Input epsilon, :: tensorflow::Input grad)
|
ResourceApplyAdam (const :: tensorflow::Scope & scope, :: tensorflow::Input var, :: tensorflow::Input m, :: tensorflow::Input v, :: tensorflow::Input beta1_power, :: tensorflow::Input beta2_power, :: tensorflow::Input lr, :: tensorflow::Input beta1, :: tensorflow::Input beta2, :: tensorflow::Input epsilon, :: tensorflow::Input grad, const ResourceApplyAdam::Attrs & attrs) |
공개 속성
공공 기능
자원적용아담
ResourceApplyAdam(
const ::tensorflow::Scope & scope,
::tensorflow::Input var,
::tensorflow::Input m,
::tensorflow::Input v,
::tensorflow::Input beta1_power,
::tensorflow::Input beta2_power,
::tensorflow::Input lr,
::tensorflow::Input beta1,
::tensorflow::Input beta2,
::tensorflow::Input epsilon,
::tensorflow::Input grad
)
자원적용아담
ResourceApplyAdam(
const ::tensorflow::Scope & scope,
::tensorflow::Input var,
::tensorflow::Input m,
::tensorflow::Input v,
::tensorflow::Input beta1_power,
::tensorflow::Input beta2_power,
::tensorflow::Input lr,
::tensorflow::Input beta1,
::tensorflow::Input beta2,
::tensorflow::Input epsilon,
::tensorflow::Input grad,
const ResourceApplyAdam::Attrs & attrs
)
연산자::텐서플로우::작업
operator::tensorflow::Operation() const
공개 정적 함수
사용잠금
Attrs UseLocking(
bool x
)
사용Nesterov
Attrs UseNesterov(
bool x
)
달리 명시되지 않는 한 이 페이지의 콘텐츠에는 Creative Commons Attribution 4.0 라이선스에 따라 라이선스가 부여되며, 코드 샘플에는 Apache 2.0 라이선스에 따라 라이선스가 부여됩니다. 자세한 내용은 Google Developers 사이트 정책을 참조하세요. 자바는 Oracle 및/또는 Oracle 계열사의 등록 상표입니다.
최종 업데이트: 2025-07-29(UTC)
[null,null,["최종 업데이트: 2025-07-29(UTC)"],[],[],null,["# tensorflow::ops::ResourceApplyAdam Class Reference\n\ntensorflow::ops::ResourceApplyAdam\n==================================\n\n`#include \u003ctraining_ops.h\u003e`\n\nUpdate '\\*var' according to the Adam algorithm.\n\nSummary\n-------\n\n$$lr_t := {learning_rate} \\* {1 - beta_2\\^t} / (1 - beta_1\\^t)$$ $$m_t := beta_1 \\* m_{t-1} + (1 - beta_1) \\* g$$ $$v_t := beta_2 \\* v_{t-1} + (1 - beta_2) \\* g \\* g$$ $$variable := variable - lr_t \\* m_t / ({v_t} + )$$\n\nArguments:\n\n- scope: A [Scope](/versions/r1.15/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope) object\n- var: Should be from a Variable().\n- m: Should be from a Variable().\n- v: Should be from a Variable().\n- beta1_power: Must be a scalar.\n- beta2_power: Must be a scalar.\n- lr: Scaling factor. Must be a scalar.\n- beta1: Momentum factor. Must be a scalar.\n- beta2: Momentum factor. Must be a scalar.\n- epsilon: Ridge term. Must be a scalar.\n- grad: The gradient.\n\n\u003cbr /\u003e\n\nOptional attributes (see [Attrs](/versions/r1.15/api_docs/cc/struct/tensorflow/ops/resource-apply-adam/attrs#structtensorflow_1_1ops_1_1_resource_apply_adam_1_1_attrs)):\n\n- use_locking: If `True`, updating of the var, m, and v tensors will be protected by a lock; otherwise the behavior is undefined, but may exhibit less contention.\n- use_nesterov: If `True`, uses the nesterov update.\n\n\u003cbr /\u003e\n\nReturns:\n\n- the created [Operation](/versions/r1.15/api_docs/cc/class/tensorflow/operation#classtensorflow_1_1_operation)\n\n\u003cbr /\u003e\n\n| ### Constructors and Destructors ||\n|---|---|\n| [ResourceApplyAdam](#classtensorflow_1_1ops_1_1_resource_apply_adam_1ac795afbdb2b0b71ee2d2de82cc60f117)`(const ::`[tensorflow::Scope](/versions/r1.15/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` var, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` m, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` v, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` beta1_power, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` beta2_power, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` lr, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` beta1, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` beta2, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` epsilon, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` grad)` ||\n| [ResourceApplyAdam](#classtensorflow_1_1ops_1_1_resource_apply_adam_1ab1142d9fee53446380bed6cf6ffc3d16)`(const ::`[tensorflow::Scope](/versions/r1.15/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` var, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` m, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` v, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` beta1_power, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` beta2_power, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` lr, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` beta1, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` beta2, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` epsilon, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` grad, const `[ResourceApplyAdam::Attrs](/versions/r1.15/api_docs/cc/struct/tensorflow/ops/resource-apply-adam/attrs#structtensorflow_1_1ops_1_1_resource_apply_adam_1_1_attrs)` & attrs)` ||\n\n| ### Public attributes ||\n|-------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|\n| [operation](#classtensorflow_1_1ops_1_1_resource_apply_adam_1aabbba4cd6d62166c77e9ac3da3caa0bd) | [Operation](/versions/r1.15/api_docs/cc/class/tensorflow/operation#classtensorflow_1_1_operation) |\n\n| ### Public functions ||\n|----------------------------------------------------------------------------------------------------------------------------------|---------|\n| [operator::tensorflow::Operation](#classtensorflow_1_1ops_1_1_resource_apply_adam_1aaf87aff51ef168ae2807151dccb08a18)`() const ` | ` ` ` ` |\n\n| ### Public static functions ||\n|-------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|\n| [UseLocking](#classtensorflow_1_1ops_1_1_resource_apply_adam_1a608016b3becbe65a6899bb3c0d4c1cf4)`(bool x)` | [Attrs](/versions/r1.15/api_docs/cc/struct/tensorflow/ops/resource-apply-adam/attrs#structtensorflow_1_1ops_1_1_resource_apply_adam_1_1_attrs) |\n| [UseNesterov](#classtensorflow_1_1ops_1_1_resource_apply_adam_1aa7ac09e230c73e3ee869c80a9eef764d)`(bool x)` | [Attrs](/versions/r1.15/api_docs/cc/struct/tensorflow/ops/resource-apply-adam/attrs#structtensorflow_1_1ops_1_1_resource_apply_adam_1_1_attrs) |\n\n| ### Structs ||\n|--------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| [tensorflow::ops::ResourceApplyAdam::Attrs](/versions/r1.15/api_docs/cc/struct/tensorflow/ops/resource-apply-adam/attrs) | Optional attribute setters for [ResourceApplyAdam](/versions/r1.15/api_docs/cc/class/tensorflow/ops/resource-apply-adam#classtensorflow_1_1ops_1_1_resource_apply_adam). |\n\nPublic attributes\n-----------------\n\n### operation\n\n```text\nOperation operation\n``` \n\nPublic functions\n----------------\n\n### ResourceApplyAdam\n\n```gdscript\n ResourceApplyAdam(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input var,\n ::tensorflow::Input m,\n ::tensorflow::Input v,\n ::tensorflow::Input beta1_power,\n ::tensorflow::Input beta2_power,\n ::tensorflow::Input lr,\n ::tensorflow::Input beta1,\n ::tensorflow::Input beta2,\n ::tensorflow::Input epsilon,\n ::tensorflow::Input grad\n)\n``` \n\n### ResourceApplyAdam\n\n```gdscript\n ResourceApplyAdam(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input var,\n ::tensorflow::Input m,\n ::tensorflow::Input v,\n ::tensorflow::Input beta1_power,\n ::tensorflow::Input beta2_power,\n ::tensorflow::Input lr,\n ::tensorflow::Input beta1,\n ::tensorflow::Input beta2,\n ::tensorflow::Input epsilon,\n ::tensorflow::Input grad,\n const ResourceApplyAdam::Attrs & attrs\n)\n``` \n\n### operator::tensorflow::Operation\n\n```gdscript\n operator::tensorflow::Operation() const \n``` \n\nPublic static functions\n-----------------------\n\n### UseLocking\n\n```text\nAttrs UseLocking(\n bool x\n)\n``` \n\n### UseNesterov\n\n```text\nAttrs UseNesterov(\n bool x\n)\n```"]]