컬렉션을 사용해 정리하기
내 환경설정을 기준으로 콘텐츠를 저장하고 분류하세요.
텐서플로우:: 작전:: ScatterMul
#include <state_ops.h>
희소 업데이트를 변수 참조에 곱합니다.
요약
이 작업은 다음을 계산합니다.
# Scalar indices
ref[indices, ...] *= updates[...]
# Vector indices (for each i)
ref[indices[i], ...] *= updates[i, ...]
# High rank indices (for each i, ..., j)
ref[indices[i, ..., j], ...] *= updates[i, ..., j, ...]
이 작업은 업데이트가 완료된 후 ref
출력합니다. 이렇게 하면 재설정 값을 사용해야 하는 작업을 연결하기가 더 쉬워집니다.
중복된 항목은 올바르게 처리됩니다. 여러 indices
동일한 위치를 참조하는 경우 기여도가 배가됩니다.
updates.shape = indices.shape + ref.shape[1:]
또는 updates.shape = []
가 필요합니다.
인수:
- 범위: 범위 개체
- ref:
Variable
노드에서 가져와야 합니다. - indices:
ref
의 첫 번째 차원에 대한 인덱스의 텐서입니다. - 업데이트:
ref
에 곱할 업데이트된 값의 텐서입니다.
선택적 속성( Attrs
참조):
- use_locking: True이면 작업이 잠금으로 보호됩니다. 그렇지 않으면 동작이 정의되지 않지만 경합이 덜 나타날 수 있습니다.
보고:
-
Output
: = ref
와 동일합니다. 업데이트가 완료된 후 업데이트된 값을 사용하려는 작업의 편의를 위해 반환됩니다.
공개 속성
공공 기능
마디
::tensorflow::Node * node() const
operator::tensorflow::Input() const
연산자::텐서플로우::출력
operator::tensorflow::Output() const
공개 정적 함수
사용잠금
Attrs UseLocking(
bool x
)
달리 명시되지 않는 한 이 페이지의 콘텐츠에는 Creative Commons Attribution 4.0 라이선스에 따라 라이선스가 부여되며, 코드 샘플에는 Apache 2.0 라이선스에 따라 라이선스가 부여됩니다. 자세한 내용은 Google Developers 사이트 정책을 참조하세요. 자바는 Oracle 및/또는 Oracle 계열사의 등록 상표입니다.
최종 업데이트: 2025-07-26(UTC)
[null,null,["최종 업데이트: 2025-07-26(UTC)"],[],[],null,["# tensorflow::ops::ScatterMul Class Reference\n\ntensorflow::ops::ScatterMul\n===========================\n\n`#include \u003cstate_ops.h\u003e`\n\nMultiplies sparse updates into a variable reference.\n\nSummary\n-------\n\nThis operation computes\n\n\n```scdoc\n # Scalar indices\n ref[indices, ...] *= updates[...]\n```\n\n\u003cbr /\u003e\n\n\n```transact-sql\n # Vector indices (for each i)\n ref[indices[i], ...] *= updates[i, ...]\n```\n\n\u003cbr /\u003e\n\n\n```scdoc\n # High rank indices (for each i, ..., j)\n ref[indices[i, ..., j], ...] *= updates[i, ..., j, ...]\n```\n\n\u003cbr /\u003e\n\nThis operation outputs `ref` after the update is done. This makes it easier to chain operations that need to use the reset value.\n\nDuplicate entries are handled correctly: if multiple `indices` reference the same location, their contributions multiply.\n\nRequires `updates.shape = indices.shape + ref.shape[1:]` or `updates.shape = []`.\n\nArguments:\n\n- scope: A [Scope](/versions/r1.15/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope) object\n- ref: Should be from a [Variable](/versions/r1.15/api_docs/cc/class/tensorflow/ops/variable#classtensorflow_1_1ops_1_1_variable) node.\n- indices: A tensor of indices into the first dimension of `ref`.\n- updates: A tensor of updated values to multiply to `ref`.\n\n\u003cbr /\u003e\n\nOptional attributes (see [Attrs](/versions/r1.15/api_docs/cc/struct/tensorflow/ops/scatter-mul/attrs#structtensorflow_1_1ops_1_1_scatter_mul_1_1_attrs)):\n\n- use_locking: If True, the operation will be protected by a lock; otherwise the behavior is undefined, but may exhibit less contention.\n\n\u003cbr /\u003e\n\nReturns:\n\n- [Output](/versions/r1.15/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output): = Same as `ref`. Returned as a convenience for operations that want to use the updated values after the update is done.\n\n\u003cbr /\u003e\n\n| ### Constructors and Destructors ||\n|---|---|\n| [ScatterMul](#classtensorflow_1_1ops_1_1_scatter_mul_1a7db6b5ac554e784855d78d429e7574e3)`(const ::`[tensorflow::Scope](/versions/r1.15/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` ref, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` indices, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` updates)` ||\n| [ScatterMul](#classtensorflow_1_1ops_1_1_scatter_mul_1a59f4787f45824ffa7053c4184caea38f)`(const ::`[tensorflow::Scope](/versions/r1.15/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` ref, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` indices, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` updates, const `[ScatterMul::Attrs](/versions/r1.15/api_docs/cc/struct/tensorflow/ops/scatter-mul/attrs#structtensorflow_1_1ops_1_1_scatter_mul_1_1_attrs)` & attrs)` ||\n\n| ### Public attributes ||\n|------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|\n| [operation](#classtensorflow_1_1ops_1_1_scatter_mul_1a3e2e0e89df1f658634f7268ac3785dd8) | [Operation](/versions/r1.15/api_docs/cc/class/tensorflow/operation#classtensorflow_1_1_operation) |\n| [output_ref](#classtensorflow_1_1ops_1_1_scatter_mul_1a6c4d285e1c8631ca2fad4529c134bd60) | `::`[tensorflow::Output](/versions/r1.15/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n\n| ### Public functions ||\n|-----------------------------------------------------------------------------------------------------------------------|------------------------|\n| [node](#classtensorflow_1_1ops_1_1_scatter_mul_1a643d99a44650276080fea233a3649261)`() const ` | `::tensorflow::Node *` |\n| [operator::tensorflow::Input](#classtensorflow_1_1ops_1_1_scatter_mul_1a1c452250deb719e0fea5fb0714fa7231)`() const ` | ` ` ` ` |\n| [operator::tensorflow::Output](#classtensorflow_1_1ops_1_1_scatter_mul_1ab7c16cd28461b1d78e7b1d1efd4811da)`() const ` | ` ` ` ` |\n\n| ### Public static functions ||\n|----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|\n| [UseLocking](#classtensorflow_1_1ops_1_1_scatter_mul_1aaacc375e6d81db93be7d7823990b3b9b)`(bool x)` | [Attrs](/versions/r1.15/api_docs/cc/struct/tensorflow/ops/scatter-mul/attrs#structtensorflow_1_1ops_1_1_scatter_mul_1_1_attrs) |\n\n| ### Structs ||\n|-----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|\n| [tensorflow::ops::ScatterMul::Attrs](/versions/r1.15/api_docs/cc/struct/tensorflow/ops/scatter-mul/attrs) | Optional attribute setters for [ScatterMul](/versions/r1.15/api_docs/cc/class/tensorflow/ops/scatter-mul#classtensorflow_1_1ops_1_1_scatter_mul). |\n\nPublic attributes\n-----------------\n\n### operation\n\n```text\nOperation operation\n``` \n\n### output_ref\n\n```scdoc\n::tensorflow::Output output_ref\n``` \n\nPublic functions\n----------------\n\n### ScatterMul\n\n```gdscript\n ScatterMul(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input ref,\n ::tensorflow::Input indices,\n ::tensorflow::Input updates\n)\n``` \n\n### ScatterMul\n\n```gdscript\n ScatterMul(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input ref,\n ::tensorflow::Input indices,\n ::tensorflow::Input updates,\n const ScatterMul::Attrs & attrs\n)\n``` \n\n### node\n\n```gdscript\n::tensorflow::Node * node() const \n``` \n\n### operator::tensorflow::Input\n\n```gdscript\n operator::tensorflow::Input() const \n``` \n\n### operator::tensorflow::Output\n\n```gdscript\n operator::tensorflow::Output() const \n``` \n\nPublic static functions\n-----------------------\n\n### UseLocking\n\n```text\nAttrs UseLocking(\n bool x\n)\n```"]]