tensorflow:: אופס:: Conv2D
#include <nn_ops.h>
מחשב קונבולוציה דו-ממדית בהינתן טנסורי קלט 4- input
filter
.
תַקצִיר
בהינתן טנסור קלט של צורה [batch, in_height, in_width, in_channels]
וטנסור מסנן / ליבה של צורה [filter_height, filter_width, in_channels, out_channels]
, הפעולה הזו מבצעת את הפעולות הבאות:
- משטח את המסנן למטריצה דו-ממדית עם צורה
[filter_height * filter_width * in_channels, output_channels]
. - מחלץ תיקוני תמונה מטנסור הקלט כדי ליצור טנזור וירטואלי של צורה
[batch, out_height, out_width, filter_height * filter_width * in_channels]
. - עבור כל תיקון, מכפיל ימני את מטריצת המסנן ואת וקטור תיקון התמונה.
בפירוט, עם פורמט ברירת המחדל של NHWC,
output[b, i, j, k] =
sum_{di, dj, q} input[b, strides[1] * i + di, strides[2] * j + dj, q] *
filter[di, dj, q, k]
חייב להיות strides[0] = strides[3] = 1
. במקרה הנפוץ ביותר של אותם צעדים אופקיים וקודקודים, strides = [1, stride, stride, 1]
.
טיעונים:
- scope: אובייקט Scope
- קלט: טנזור 4-D. סדר הממדים מתפרש לפי הערך של
data_format
, ראה למטה לפרטים. - מסנן: טנסור 4-D של צורה
[filter_height, filter_width, in_channels, out_channels]
- צעדים: טנסור 1-D באורך 4. הצעד של חלון ההזזה עבור כל מימד של
input
. סדר הממדים נקבע לפי הערך שלdata_format
, ראה למטה לפרטים. - ריפוד: סוג אלגוריתם הריפוד שיש להשתמש בו.
מאפיינים אופציונליים (ראה Attrs
):
- explicit_paddings: אם
padding
הוא"EXPLICIT"
, רשימת סכומי הריפוד המפורשים. עבור הממד ה-ith, כמות הריפוד שהוכנסה לפני ואחרי הממד היאexplicit_paddings[2 * i]
ו-explicit_paddings[2 * i + 1]
, בהתאמה. אםpadding
אינו"EXPLICIT"
,explicit_paddings
חייב להיות ריק. - data_format: ציין את פורמט הנתונים של נתוני הקלט והפלט. עם פורמט ברירת המחדל "NHWC", הנתונים מאוחסנים בסדר של: [אצווה, גובה, רוחב, ערוצים]. לחלופין, הפורמט יכול להיות "NCHW", סדר אחסון הנתונים של: [אצווה, ערוצים, גובה, רוחב].
- הרחבות: טנזור 1-D באורך 4. מקדם ההתרחבות עבור כל מימד של
input
. אם הוגדר כ-k > 1, יהיו תאים שדילגו על k-1 בין כל רכיב מסנן בממד זה. סדר הממדים נקבע לפי הערך שלdata_format
, ראה לעיל לפרטים. הרחבות במידות האצווה והעומק חייבות להיות 1.
החזרות:
-
Output
: טנזור 4-D. סדר הממד נקבע לפי הערך שלdata_format
, ראה למטה לפרטים.
בנאים והורסים | |
---|---|
Conv2D (const :: tensorflow::Scope & scope, :: tensorflow::Input input, :: tensorflow::Input filter, const gtl::ArraySlice< int > & strides, StringPiece padding) | |
Conv2D (const :: tensorflow::Scope & scope, :: tensorflow::Input input, :: tensorflow::Input filter, const gtl::ArraySlice< int > & strides, StringPiece padding, const Conv2D::Attrs & attrs) |
תפקידים ציבוריים | |
---|---|
node () const | ::tensorflow::Node * |
operator::tensorflow::Input () const | |
operator::tensorflow::Output () const |
פונקציות סטטיות ציבוריות | |
---|---|
DataFormat (StringPiece x) | |
Dilations (const gtl::ArraySlice< int > & x) | |
ExplicitPaddings (const gtl::ArraySlice< int > & x) | |
UseCudnnOnGpu (bool x) |
מבנים | |
---|---|
tensorflow:: ops:: Conv2D:: Attrs | קובעי תכונות אופציונליים עבור Conv2D . |
תכונות ציבוריות
מִבצָע
Operation operation
תְפוּקָה
::tensorflow::Output output
תפקידים ציבוריים
Conv2D
Conv2D( const ::tensorflow::Scope & scope, ::tensorflow::Input input, ::tensorflow::Input filter, const gtl::ArraySlice< int > & strides, StringPiece padding )
Conv2D
Conv2D( const ::tensorflow::Scope & scope, ::tensorflow::Input input, ::tensorflow::Input filter, const gtl::ArraySlice< int > & strides, StringPiece padding, const Conv2D::Attrs & attrs )
צוֹמֶת
::tensorflow::Node * node() const
מפעיל::tensorflow::קלט
operator::tensorflow::Input() const
אופרטור::tensorflow::פלט
operator::tensorflow::Output() const