tensorflow:: ops:: DeserializeSparse
#include <sparse_ops.h>
Deserialize SparseTensor objects.
Summary
The input serialized_sparse must have the shape [?, ?, ..., ?, 3] where the last dimension stores serialized SparseTensor objects and the other N dimensions (N >= 0) correspond to a batch. The ranks of the original SparseTensor objects must all match. When the final SparseTensor is created, its rank is the rank of the incoming SparseTensor objects plus N; the sparse tensors have been concatenated along new dimensions, one for each batch.
The output SparseTensor object's shape values for the original dimensions are the max across the input SparseTensor objects' shape values for the corresponding dimensions. The new dimensions match the size of the batch.
The input SparseTensor objects' indices are assumed ordered in standard lexicographic order. If this is not the case, after this step run SparseReorder to restore index ordering.
For example, if the serialized input is a [2 x 3] matrix representing two original SparseTensor objects:
index = [ 0]
[10]
[20]
values = [1, 2, 3]
shape = [50]and
index = [ 2]
[10]
values = [4, 5]
shape = [30]then the final deserialized SparseTensor will be:
index = [0 0]
[0 10]
[0 20]
[1 2]
[1 10]
values = [1, 2, 3, 4, 5]
shape = [2 50]Arguments:
- scope: A Scope object
- serialized_sparse: The serialized
SparseTensorobjects. The last dimension must have 3 columns. - dtype: The
dtypeof the serializedSparseTensorobjects.
Returns:
Constructors and Destructors |
|
|---|---|
DeserializeSparse(const ::tensorflow::Scope & scope, ::tensorflow::Input serialized_sparse, DataType dtype)
|
Public attributes |
|
|---|---|
operation
|
|
sparse_indices
|
|
sparse_shape
|
|
sparse_values
|
|
Public attributes
operation
Operation operation
sparse_indices
::tensorflow::Output sparse_indices
sparse_shape
::tensorflow::Output sparse_shape
sparse_values
::tensorflow::Output sparse_values
Public functions
DeserializeSparse
DeserializeSparse( const ::tensorflow::Scope & scope, ::tensorflow::Input serialized_sparse, DataType dtype )