تدفق التوتر:: العمليات:: ماتريكس دياجV2
#include <array_ops.h>
تُرجع موترًا قطريًا مجمعًا بقيم قطرية مجمعة معينة.
ملخص
يُرجع موترًا بمحتوياته بشكل diagonal
مثل k[0]
-th إلى k[1]
-th أقطار المصفوفة، مع كل شيء آخر مبطن padding
. تحدد num_rows
و num_cols
بُعد المصفوفة الأعمق للمخرجات. إذا لم يتم تحديد كلاهما، تفترض العملية أن المصفوفة الأعمق مربعة وتستنتج حجمها من k
والبعد الأعمق diagonal
. إذا تم تحديد واحد منهم فقط، فإن العملية تفترض أن القيمة غير المحددة هي أصغر قيمة ممكنة بناءً على معايير أخرى.
دع diagonal
له أبعاد r
[I, J, ..., L, M, N]
. موتر الخرج له رتبة r+1
بالشكل [I, J, ..., L, M, num_rows, num_cols]
عندما يتم إعطاء قطري واحد فقط ( k
هو عدد صحيح أو k[0] == k[1]
) . بخلاف ذلك، لها رتبة r
بالشكل [I, J, ..., L, num_rows, num_cols]
.
البعد الثاني الأعمق diagonal
له معنى مزدوج. عندما يكون k
عدديًا أو k[0] == k[1]
، يكون M
جزءًا من حجم الدفعة [I, J, ..., M]، وموتر الإخراج هو:
output[i, j, ..., l, m, n]
= diagonal[i, j, ..., l, n-max(d_upper, 0)] ; if n - m == d_upper
output[i, j, ..., l, m, n] ; otherwise
بخلاف ذلك، يتم التعامل مع M
على أنه عدد أقطار المصفوفة في نفس الدفعة ( M = k[1]-k[0]+1
)، وموتر الخرج هو:
output[i, j, ..., l, m, n]
= diagonal[i, j, ..., l, k[1]-d, n-max(d, 0)] ; if d_lower <= d <= d_upper
input[i, j, ..., l, m, n] ; otherwise
d = n - m
على سبيل المثال:
# The main diagonal.
diagonal = np.array([[1, 2, 3, 4], # Input shape: (2, 4)
[5, 6, 7, 8]])
tf.matrix_diag(diagonal) ==> [[[1, 0, 0, 0], # Output shape: (2, 4, 4)
[0, 2, 0, 0],
[0, 0, 3, 0],
[0, 0, 0, 4]],
[[5, 0, 0, 0],
[0, 6, 0, 0],
[0, 0, 7, 0],
[0, 0, 0, 8]]]
# A superdiagonal (per batch).
diagonal = np.array([[1, 2, 3], # Input shape: (2, 3)
[4, 5, 6]])
tf.matrix_diag(diagonal, k = 1)
==> [[[0, 1, 0, 0], # Output shape: (2, 4, 4)
[0, 0, 2, 0],
[0, 0, 0, 3],
[0, 0, 0, 0]],
[[0, 4, 0, 0],
[0, 0, 5, 0],
[0, 0, 0, 6],
[0, 0, 0, 0]]]
# A band of diagonals.
diagonals = np.array([[[1, 2, 3], # Input shape: (2, 2, 3)
[4, 5, 0]],
[[6, 7, 9],
[9, 1, 0]]])
tf.matrix_diag(diagonals, k = (-1, 0))
==> [[[1, 0, 0], # Output shape: (2, 3, 3)
[4, 2, 0],
[0, 5, 3]],
[[6, 0, 0],
[9, 7, 0],
[0, 1, 9]]]
# Rectangular matrix.
diagonal = np.array([1, 2]) # Input shape: (2)
tf.matrix_diag(diagonal, k = -1, num_rows = 3, num_cols = 4)
==> [[0, 0, 0, 0], # Output shape: (3, 4)
[1, 0, 0, 0],
[0, 2, 0, 0]]
# Rectangular matrix with inferred num_cols and padding = 9.
tf.matrix_diag(diagonal, k = -1, num_rows = 3, padding = 9)
==> [[9, 9], # Output shape: (3, 2)
[1, 9],
[9, 2]]
الحجج:
- النطاق: كائن النطاق
- قطري: الرتبة
r
، حيثr >= 1
- k: الإزاحة القطرية. القيمة الموجبة تعني القطر الفائق، 0 تشير إلى القطر الرئيسي، والقيمة السالبة تعني الأقطار الفرعية. يمكن أن يكون
k
عددًا صحيحًا واحدًا (لقطر واحد) أو زوجًا من الأعداد الصحيحة التي تحدد الأطراف المنخفضة والعالية لنطاق المصفوفة. يجب ألا يكونk[0]
أكبر منk[1]
. - num_rows: عدد صفوف مصفوفة الإخراج. إذا لم يتم توفيره، فإن المرجع يفترض أن مصفوفة الإخراج هي مصفوفة مربعة ويستنتج حجم المصفوفة من k والبعد الأعمق
diagonal
. - num_cols: عدد أعمدة مصفوفة الإخراج. إذا لم يتم توفيره، فإن المرجع يفترض أن مصفوفة الإخراج هي مصفوفة مربعة ويستنتج حجم المصفوفة من k والبعد الأعمق
diagonal
. - قيمة الحشو: الرقم المراد ملء المنطقة خارج النطاق القطري المحدد به. الافتراضي هو 0.
العوائد:
-
Output
: له الرتبةr+1
عندما يكونk
عددًا صحيحًا أوk[0] == k[1]
، والرتبةr
بخلاف ذلك.
البنائين والمدمرين | |
---|---|
MatrixDiagV2 (const :: tensorflow::Scope & scope, :: tensorflow::Input diagonal, :: tensorflow::Input k, :: tensorflow::Input num_rows, :: tensorflow::Input num_cols, :: tensorflow::Input padding_value) |
الوظائف العامة | |
---|---|
node () const | ::tensorflow::Node * |
operator::tensorflow::Input () const | |
operator::tensorflow::Output () const |
الصفات العامة
عملية
Operation operation
الإخراج
::tensorflow::Output output
الوظائف العامة
ماتريكس دياجV2
MatrixDiagV2(
const ::tensorflow::Scope & scope,
::tensorflow::Input diagonal,
::tensorflow::Input k,
::tensorflow::Input num_rows,
::tensorflow::Input num_cols,
::tensorflow::Input padding_value
)
العقدة
::tensorflow::Node * node() const
المشغل::tensorflow::الإدخال
operator::tensorflow::Input() const
المشغل::tensorflow::الإخراج
operator::tensorflow::Output() const