przepływ tensorowy:: ops:: MatrixDiagV2

#include <array_ops.h>

Zwraca wsadowy tensor diagonalny z podanymi wsadowymi wartościami przekątnymi.

Streszczenie

Zwraca tensor z zawartością w diagonal jako k[0] -tej do k[1] -tej przekątnej macierzy, a wszystko inne jest dopełnione padding . num_rows i num_cols określają wymiar najbardziej wewnętrznej macierzy wyniku. Jeśli oba nie zostaną określone, op zakłada, że ​​najbardziej wewnętrzna macierz jest kwadratowa i wnioskuje o jej rozmiarze z k i najbardziej wewnętrznego wymiaru diagonal . Jeśli określono tylko jeden z nich, op zakłada, że ​​nieokreślona wartość jest najmniejszą możliwą w oparciu o inne kryteria.

Niech diagonal ma r wymiarów [I, J, ..., L, M, N] . Tensor wyjściowy ma rangę r+1 i ma kształt [I, J, ..., L, M, num_rows, num_cols] gdy podana jest tylko jedna przekątna ( k jest liczbą całkowitą lub k[0] == k[1] ) . W przeciwnym razie ma rangę r i kształt [I, J, ..., L, num_rows, num_cols] .

Drugi najbardziej wewnętrzny wymiar diagonal ma podwójne znaczenie. Gdy k jest skalarne lub k[0] == k[1] , M jest częścią wielkości partii [I, J, ..., M], a tensor wyjściowy to:

output[i, j, ..., l, m, n]
 
= diagonal[i, j, ..., l, n-max(d_upper, 0)] ; if n - m == d_upper
    output
[i, j, ..., l, m, n]                ; otherwise

W przeciwnym razie M traktuje się jako liczbę przekątnych macierzy w tej samej partii ( M = k[1]-k[0]+1 ), a tensor wyjściowy wynosi:

output[i, j, ..., l, m, n]
 
= diagonal[i, j, ..., l, k[1]-d, n-max(d, 0)] ; if d_lower <= d <= d_upper
    input
[i, j, ..., l, m, n]                   ; otherwise
gdzie d = n - m

Na przykład:

# The main diagonal.
diagonal
= np.array([[1, 2, 3, 4],            # Input shape: (2, 4)
                     
[5, 6, 7, 8]])
tf
.matrix_diag(diagonal) ==> [[[1, 0, 0, 0],  # Output shape: (2, 4, 4)
                               
[0, 2, 0, 0],
                               
[0, 0, 3, 0],
                               
[0, 0, 0, 4]],
                             
[[5, 0, 0, 0],
                               
[0, 6, 0, 0],
                               
[0, 0, 7, 0],
                               
[0, 0, 0, 8]]]

# A superdiagonal (per batch).
diagonal
= np.array([[1, 2, 3],  # Input shape: (2, 3)
                     
[4, 5, 6]])
tf
.matrix_diag(diagonal, k = 1)
 
==> [[[0, 1, 0, 0],  # Output shape: (2, 4, 4)
       
[0, 0, 2, 0],
       
[0, 0, 0, 3],
       
[0, 0, 0, 0]],
       
[[0, 4, 0, 0],
       
[0, 0, 5, 0],
       
[0, 0, 0, 6],
       
[0, 0, 0, 0]]]

# A band of diagonals.
diagonals
= np.array([[[1, 2, 3],  # Input shape: (2, 2, 3)
                       
[4, 5, 0]],
                     
[[6, 7, 9],
                       
[9, 1, 0]]])
tf
.matrix_diag(diagonals, k = (-1, 0))
 
==> [[[1, 0, 0],  # Output shape: (2, 3, 3)
       
[4, 2, 0],
       
[0, 5, 3]],
       
[[6, 0, 0],
       
[9, 7, 0],
       
[0, 1, 9]]]

# Rectangular matrix.
diagonal
= np.array([1, 2])  # Input shape: (2)
tf
.matrix_diag(diagonal, k = -1, num_rows = 3, num_cols = 4)
 
==> [[0, 0, 0, 0],  # Output shape: (3, 4)
       
[1, 0, 0, 0],
       
[0, 2, 0, 0]]

# Rectangular matrix with inferred num_cols and padding = 9.
tf
.matrix_diag(diagonal, k = -1, num_rows = 3, padding = 9)
 
==> [[9, 9],  # Output shape: (3, 2)
       
[1, 9],
       
[9, 2]]

Argumenty:

  • zakres: Obiekt Scope
  • przekątna: stopień r , gdzie r >= 1
  • k: Przesunięcie ukośne. Wartość dodatnia oznacza nadprzekątną, 0 odnosi się do głównej przekątnej, a wartość ujemna oznacza podprzekątną. k może być pojedynczą liczbą całkowitą (dla pojedynczej przekątnej) lub parą liczb całkowitych określających dolny i górny koniec pasma macierzy. k[0] nie może być większe niż k[1] .
  • num_rows: Liczba wierszy macierzy wyjściowej. Jeśli nie jest podany, op zakłada, że ​​macierz wyjściowa jest macierzą kwadratową i wnioskuje o rozmiarze macierzy z k i najbardziej wewnętrznego wymiaru diagonal .
  • num_cols: Liczba kolumn macierzy wyjściowej. Jeśli nie jest podany, op zakłada, że ​​macierz wyjściowa jest macierzą kwadratową i wnioskuje o rozmiarze macierzy z k i najbardziej wewnętrznego wymiaru diagonal .
  • wartość_dopełnienia: Liczba, którą należy wypełnić obszar poza określonym pasmem ukośnym. Wartość domyślna to 0.

Zwroty:

  • Output : Ma rangę r+1 gdy k jest liczbą całkowitą lub k[0] == k[1] , rangę r w przeciwnym razie.

Konstruktory i destruktory

MatrixDiagV2 (const :: tensorflow::Scope & scope, :: tensorflow::Input diagonal, :: tensorflow::Input k, :: tensorflow::Input num_rows, :: tensorflow::Input num_cols, :: tensorflow::Input padding_value)

Funkcje publiczne

node () const
::tensorflow::Node *
operator::tensorflow::Input () const
operator::tensorflow::Output () const

Atrybuty publiczne

działanie

Operation operation

wyjście

::tensorflow::Output output

Funkcje publiczne

MatrixDiagV2

 MatrixDiagV2(
 
const ::tensorflow::Scope & scope,
 
::tensorflow::Input diagonal,
 
::tensorflow::Input k,
 
::tensorflow::Input num_rows,
 
::tensorflow::Input num_cols,
 
::tensorflow::Input padding_value
)

węzeł

::tensorflow::Node * node() const 

operator::tensorflow::Wejście

 operator::tensorflow::Input() const 

operator::tensorflow::Wyjście

 operator::tensorflow::Output() const