tensor akışı:: işlem:: MatrixSetDiagV2
#include <array_ops.h>
Yeni toplu çapraz değerlere sahip toplu matris tensörünü döndürür.
Özet
input
ve diagonal
verildiğinde, bu işlem, en içteki matrislerin belirtilen köşegenleri dışında, input
ile aynı şekil ve değerlere sahip bir tensör döndürür. Bunların üzerine diagonal
değerler yazılacaktır.
input
r+1
boyutu vardır [I, J, ..., L, M, N]
. k
skaler olduğunda veya k[0] == k[1]
olduğunda, diagonal
r
boyutlara sahiptir [I, J, ..., L, max_diag_len]
. Aksi takdirde, r+1
boyutları vardır [I, J, ..., L, num_diags, max_diag_len]
. num_diags
köşegenlerin sayısıdır, num_diags = k[1] - k[0] + 1
. max_diag_len
[k[0], k[1]]
aralığındaki en uzun köşegendir max_diag_len = min(M + min(k[1], 0), N + min(-k[0], 0))
Çıkış [I, J, ..., L, M, N]
boyutlarına sahip k+1
dereceli bir tensördür. Eğer k
skaler veya k[0] == k[1]
:
output[i, j, ..., l, m, n]
= diagonal[i, j, ..., l, n-max(k[1], 0)] ; if n - m == k[1]
output[i, j, ..., l, m, n] ; otherwise
Aksi takdirde,
output[i, j, ..., l, m, n]
= diagonal[i, j, ..., l, k[1]-d, n-max(d, 0)] ; if d_lower <= d <= d_upper
input[i, j, ..., l, m, n] ; otherwise
d = n - m
Örneğin:
# The main diagonal.
input = np.array([[[7, 7, 7, 7], # Input shape: (2, 3, 4)
[7, 7, 7, 7],
[7, 7, 7, 7]],
[[7, 7, 7, 7],
[7, 7, 7, 7],
[7, 7, 7, 7]]])
diagonal = np.array([[1, 2, 3], # Diagonal shape: (2, 3)
[4, 5, 6]])
tf.matrix_diag(diagonal) ==> [[[1, 7, 7, 7], # Output shape: (2, 3, 4)
[7, 2, 7, 7],
[7, 7, 3, 7]],
[[4, 7, 7, 7],
[7, 5, 7, 7],
[7, 7, 6, 7]]]
# A superdiagonal (per batch).
tf.matrix_diag(diagonal, k = 1)
==> [[[7, 1, 7, 7], # Output shape: (2, 3, 4)
[7, 7, 2, 7],
[7, 7, 7, 3]],
[[7, 4, 7, 7],
[7, 7, 5, 7],
[7, 7, 7, 6]]]
# A band of diagonals.
diagonals = np.array([[[1, 2, 3], # Diagonal shape: (2, 2, 3)
[4, 5, 0]],
[[6, 1, 2],
[3, 4, 0]]])
tf.matrix_diag(diagonals, k = (-1, 0))
==> [[[1, 7, 7, 7], # Output shape: (2, 3, 4)
[4, 2, 7, 7],
[0, 5, 3, 7]],
[[6, 7, 7, 7],
[3, 1, 7, 7],
[7, 4, 2, 7]]]
Arguments:
- scope: A Scope object
- input: Rank
r+1
, wherer >= 1
. - diagonal: Rank
r
whenk
is an integer ork[0] == k[1]
. Otherwise, it has rankr+1
.k >= 1
. - k: Diagonal offset(s). Positive value means superdiagonal, 0 refers to the main diagonal, and negative value means subdiagonals.
k
can be a single integer (for a single diagonal) or a pair of integers specifying the low and high ends of a matrix band.k[0]
must not be larger thank[1]
.
Returns:
Output
: Rankr+1
, withoutput.shape = input.shape
.
Constructors and Destructors | |
---|---|
MatrixSetDiagV2(const ::tensorflow::Scope & scope, ::tensorflow::Input input, ::tensorflow::Input diagonal, ::tensorflow::Input k) |
Public functions | |
---|---|
node() const | ::tensorflow::Node * |
operator::tensorflow::Input() const |
|
operator::tensorflow::Output() const |
|