جریان تنسور:: عملیات:: SparseApplyFtrl
#include <training_ops.h>
ورودی های مربوطه را در '*var' طبق طرح Ftrl-proximal به روز کنید.
خلاصه
یعنی برای ردیف هایی که grad داریم، var، accum و linear را به صورت زیر به روز می کنیم: $$accum_new = accum + grad * grad$$ $$linear += grad + (accum_{new}^{-lr_{power}} - accum^{-lr_{power}} / lr * var$$ $$quadratic = 1.0 / (accum_{new}^{lr_{power}} * lr) + 2 * l2$$ $$var = (sign(linear) * l1 - linear) / quadratic\ if\ |linear| > l1\ else\ 0.0$$ $$accum = accum_{new}$$
استدلال ها:
- scope: یک شی Scope
- var: باید از یک متغیر () باشد.
- accum: باید از یک متغیر () باشد.
- خطی: باید از یک متغیر () باشد.
- grad: گرادیان.
- شاخص ها: بردار شاخص ها در بعد اول var و accum.
- lr: ضریب مقیاس. باید اسکالر باشد.
- l1: تنظیم L1. باید اسکالر باشد.
- l2: تنظیم L2. باید اسکالر باشد.
- lr_power: ضریب مقیاس. باید اسکالر باشد.
ویژگی های اختیاری (به Attrs
مراجعه کنید):
- use_locking: اگر
True
، بهروزرسانی تانسور var و accum توسط یک قفل محافظت میشود. در غیر این صورت رفتار تعریف نشده است، اما ممکن است اختلاف کمتری از خود نشان دهد.
برمی گرداند:
-
Output
: مانند "var".
سازندگان و ویرانگرها | |
---|---|
SparseApplyFtrl (const :: tensorflow::Scope & scope, :: tensorflow::Input var, :: tensorflow::Input accum, :: tensorflow::Input linear, :: tensorflow::Input grad, :: tensorflow::Input indices, :: tensorflow::Input lr, :: tensorflow::Input l1, :: tensorflow::Input l2, :: tensorflow::Input lr_power) | |
SparseApplyFtrl (const :: tensorflow::Scope & scope, :: tensorflow::Input var, :: tensorflow::Input accum, :: tensorflow::Input linear, :: tensorflow::Input grad, :: tensorflow::Input indices, :: tensorflow::Input lr, :: tensorflow::Input l1, :: tensorflow::Input l2, :: tensorflow::Input lr_power, const SparseApplyFtrl::Attrs & attrs) |
توابع عمومی | |
---|---|
node () const | ::tensorflow::Node * |
operator::tensorflow::Input () const | |
operator::tensorflow::Output () const |
توابع استاتیک عمومی | |
---|---|
UseLocking (bool x) |
سازه ها | |
---|---|
tensorflow:: ops:: SparseApplyFtrl:: Attrs | تنظیم کننده های ویژگی اختیاری برای SparseApplyFtrl . |
صفات عمومی
عملیات
Operation operation
بیرون
::tensorflow::Output out
توابع عمومی
SparseApplyFtrl
SparseApplyFtrl( const ::tensorflow::Scope & scope, ::tensorflow::Input var, ::tensorflow::Input accum, ::tensorflow::Input linear, ::tensorflow::Input grad, ::tensorflow::Input indices, ::tensorflow::Input lr, ::tensorflow::Input l1, ::tensorflow::Input l2, ::tensorflow::Input lr_power )
SparseApplyFtrl
SparseApplyFtrl( const ::tensorflow::Scope & scope, ::tensorflow::Input var, ::tensorflow::Input accum, ::tensorflow::Input linear, ::tensorflow::Input grad, ::tensorflow::Input indices, ::tensorflow::Input lr, ::tensorflow::Input l1, ::tensorflow::Input l2, ::tensorflow::Input lr_power, const SparseApplyFtrl::Attrs & attrs )
گره
::tensorflow::Node * node() const
عملگر::tensorflow::ورودی
operator::tensorflow::Input() const
عملگر::tensorflow::خروجی
operator::tensorflow::Output() const
توابع استاتیک عمومی
استفاده از قفل
Attrs UseLocking( bool x )