Tetap teratur dengan koleksi
Simpan dan kategorikan konten berdasarkan preferensi Anda.
aliran tensor:: operasi:: Deserialisasi Jarang
#include <sparse_ops.h>
Deserialisasi objek SparseTensor
.
Ringkasan
Input serialized_sparse
harus berbentuk [?, ?, ..., ?, 3]
dengan dimensi terakhir menyimpan objek SparseTensor
berseri dan N dimensi lainnya (N >= 0) sesuai dengan batch. Jajaran objek SparseTensor
asli semuanya harus cocok. Saat SparseTensor
akhir dibuat, peringkatnya adalah peringkat objek SparseTensor
yang masuk ditambah N; tensor renggang telah digabungkan sepanjang dimensi baru, satu untuk setiap kumpulan.
Nilai bentuk objek SparseTensor
keluaran untuk dimensi asli adalah nilai maksimal seluruh nilai bentuk objek SparseTensor
masukan untuk dimensi terkait. Dimensi baru sesuai dengan ukuran batch.
Indeks objek input SparseTensor
diasumsikan diurutkan dalam urutan leksikografis standar. Jika tidak demikian, setelah langkah ini jalankan SparseReorder
untuk memulihkan pengurutan indeks.
Misalnya, jika input serial adalah matriks [2 x 3]
yang mewakili dua objek SparseTensor
asli:
index = [ 0]
[10]
[20]
values = [1, 2, 3]
shape = [50]
Dan
index = [ 2]
[10]
values = [4, 5]
shape = [30]
maka SparseTensor
terakhir yang dideserialisasi akan menjadi:
index = [0 0]
[0 10]
[0 20]
[1 2]
[1 10]
values = [1, 2, 3, 4, 5]
shape = [2 50]
Argumen:
- ruang lingkup: Objek Lingkup
- serialized_sparse: Objek
SparseTensor
yang diserialkan. Dimensi terakhir harus memiliki 3 kolom. - dtype: Tipe
dtype
dari objek SparseTensor
yang diserialkan.
Pengembalian:
Atribut publik
Fungsi publik
Kecuali dinyatakan lain, konten di halaman ini dilisensikan berdasarkan Lisensi Creative Commons Attribution 4.0, sedangkan contoh kode dilisensikan berdasarkan Lisensi Apache 2.0. Untuk mengetahui informasi selengkapnya, lihat Kebijakan Situs Google Developers. Java adalah merek dagang terdaftar dari Oracle dan/atau afiliasinya.
Terakhir diperbarui pada 2025-07-27 UTC.
[null,null,["Terakhir diperbarui pada 2025-07-27 UTC."],[],[],null,["# tensorflow::ops::DeserializeSparse Class Reference\n\ntensorflow::ops::DeserializeSparse\n==================================\n\n`#include \u003csparse_ops.h\u003e`\n\nDeserialize `SparseTensor` objects.\n\nSummary\n-------\n\nThe input `serialized_sparse` must have the shape `[?, ?, ..., ?, 3]` where the last dimension stores serialized `SparseTensor` objects and the other N dimensions (N \\\u003e= 0) correspond to a batch. The ranks of the original `SparseTensor` objects must all match. When the final `SparseTensor` is created, its rank is the rank of the incoming `SparseTensor` objects plus N; the sparse tensors have been concatenated along new dimensions, one for each batch.\n\nThe output `SparseTensor` object's shape values for the original dimensions are the max across the input `SparseTensor` objects' shape values for the corresponding dimensions. The new dimensions match the size of the batch.\n\nThe input `SparseTensor` objects' indices are assumed ordered in standard lexicographic order. If this is not the case, after this step run [SparseReorder](/versions/r2.2/api_docs/cc/class/tensorflow/ops/sparse-reorder#classtensorflow_1_1ops_1_1_sparse_reorder) to restore index ordering.\n\nFor example, if the serialized input is a `[2 x 3]` matrix representing two original `SparseTensor` objects: \n\n```text\nindex = [ 0]\n [10]\n [20]\nvalues = [1, 2, 3]\nshape = [50]\n```\n\n\u003cbr /\u003e\n\nand \n\n```text\nindex = [ 2]\n [10]\nvalues = [4, 5]\nshape = [30]\n```\n\n\u003cbr /\u003e\n\nthen the final deserialized `SparseTensor` will be: \n\n```text\nindex = [0 0]\n [0 10]\n [0 20]\n [1 2]\n [1 10]\nvalues = [1, 2, 3, 4, 5]\nshape = [2 50]\n```\n\n\u003cbr /\u003e\n\nArguments:\n\n- scope: A [Scope](/versions/r2.2/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope) object\n- serialized_sparse: The serialized `SparseTensor` objects. The last dimension must have 3 columns.\n- dtype: The `dtype` of the serialized `SparseTensor` objects.\n\n\u003cbr /\u003e\n\nReturns:\n\n- [Output](/versions/r2.2/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) sparse_indices\n- [Output](/versions/r2.2/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) sparse_values\n- [Output](/versions/r2.2/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) sparse_shape\n\n\u003cbr /\u003e\n\n| ### Constructors and Destructors ||\n|---|---|\n| [DeserializeSparse](#classtensorflow_1_1ops_1_1_deserialize_sparse_1a023794d9b956960ff8d7189e5e3feec5)`(const ::`[tensorflow::Scope](/versions/r2.2/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r2.2/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` serialized_sparse, DataType dtype)` ||\n\n| ### Public attributes ||\n|-----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|\n| [operation](#classtensorflow_1_1ops_1_1_deserialize_sparse_1abdd692db872e045ede9e84be66b35bc3) | [Operation](/versions/r2.2/api_docs/cc/class/tensorflow/operation#classtensorflow_1_1_operation) |\n| [sparse_indices](#classtensorflow_1_1ops_1_1_deserialize_sparse_1acdaf19772a1be03384f76ac4e07f6aaf) | `::`[tensorflow::Output](/versions/r2.2/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n| [sparse_shape](#classtensorflow_1_1ops_1_1_deserialize_sparse_1a86bbd4ffa415bb68db5fa2f1e76e7de5) | `::`[tensorflow::Output](/versions/r2.2/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n| [sparse_values](#classtensorflow_1_1ops_1_1_deserialize_sparse_1a303201bfe16885e2cef2b115049d005e) | `::`[tensorflow::Output](/versions/r2.2/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n\nPublic attributes\n-----------------\n\n### operation\n\n```text\nOperation operation\n``` \n\n### sparse_indices\n\n```scdoc\n::tensorflow::Output sparse_indices\n``` \n\n### sparse_shape\n\n```scdoc\n::tensorflow::Output sparse_shape\n``` \n\n### sparse_values\n\n```scdoc\n::tensorflow::Output sparse_values\n``` \n\nPublic functions\n----------------\n\n### DeserializeSparse\n\n```gdscript\n DeserializeSparse(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input serialized_sparse,\n DataType dtype\n)\n```"]]