Tetap teratur dengan koleksi
Simpan dan kategorikan konten berdasarkan preferensi Anda.
aliran tensor:: operasi:: Diag
#include <array_ops.h>
Mengembalikan tensor diagonal dengan nilai diagonal tertentu.
Ringkasan
Jika diberi diagonal
, operasi ini mengembalikan tensor dengan diagonal
dan yang lainnya diisi dengan nol. Diagonal dihitung sebagai berikut:
Asumsikan diagonal
berdimensi [D1,..., Dk], maka outputnya berupa tensor rank 2k dengan dimensi [D1,..., Dk, D1,..., Dk] dimana:
output[i1,..., ik, i1,..., ik] = diagonal[i1, ..., ik]
dan 0 di tempat lain.
Misalnya:
# 'diagonal' is [1, 2, 3, 4]
tf.diag(diagonal) ==> [[1, 0, 0, 0]
[0, 2, 0, 0]
[0, 0, 3, 0]
[0, 0, 0, 4]]
Argumen:
- ruang lingkup: Objek Lingkup
- diagonal: Peringkat k tensor dengan k paling banyak 1.
Pengembalian:
Atribut publik
Fungsi publik
simpul
::tensorflow::Node * node() const
operator::tensorflow::Input() const
operator::tensorflow::Keluaran
operator::tensorflow::Output() const
Kecuali dinyatakan lain, konten di halaman ini dilisensikan berdasarkan Lisensi Creative Commons Attribution 4.0, sedangkan contoh kode dilisensikan berdasarkan Lisensi Apache 2.0. Untuk mengetahui informasi selengkapnya, lihat Kebijakan Situs Google Developers. Java adalah merek dagang terdaftar dari Oracle dan/atau afiliasinya.
Terakhir diperbarui pada 2025-07-27 UTC.
[null,null,["Terakhir diperbarui pada 2025-07-27 UTC."],[],[],null,["# tensorflow::ops::Diag Class Reference\n\ntensorflow::ops::Diag\n=====================\n\n`#include \u003carray_ops.h\u003e`\n\nReturns a diagonal tensor with a given diagonal values.\n\nSummary\n-------\n\nGiven a `diagonal`, this operation returns a tensor with the `diagonal` and everything else padded with zeros. The diagonal is computed as follows:\n\nAssume `diagonal` has dimensions \\[D1,..., Dk\\], then the output is a tensor of rank 2k with dimensions \\[D1,..., Dk, D1,..., Dk\\] where:\n\n`output[i1,..., ik, i1,..., ik] = diagonal[i1, ..., ik]` and 0 everywhere else.\n\nFor example:\n\n\n```text\n# 'diagonal' is [1, 2, 3, 4]\ntf.diag(diagonal) ==\u003e [[1, 0, 0, 0]\n [0, 2, 0, 0]\n [0, 0, 3, 0]\n [0, 0, 0, 4]]\n```\n\n\u003cbr /\u003e\n\nArguments:\n\n- scope: A [Scope](/versions/r2.2/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope) object\n- diagonal: Rank k tensor where k is at most 1.\n\n\u003cbr /\u003e\n\nReturns:\n\n- [Output](/versions/r2.2/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output): The output tensor.\n\n\u003cbr /\u003e\n\n| ### Constructors and Destructors ||\n|---|---|\n| [Diag](#classtensorflow_1_1ops_1_1_diag_1a5beb111139305546f475c8687a35ce26)`(const ::`[tensorflow::Scope](/versions/r2.2/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r2.2/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` diagonal)` ||\n\n| ### Public attributes ||\n|----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|\n| [operation](#classtensorflow_1_1ops_1_1_diag_1a051fe6a94969df559f77f9da31685e59) | [Operation](/versions/r2.2/api_docs/cc/class/tensorflow/operation#classtensorflow_1_1_operation) |\n| [output](#classtensorflow_1_1ops_1_1_diag_1a0928ff530cf6fe0c4b3f4f1e6e1a419b) | `::`[tensorflow::Output](/versions/r2.2/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n\n| ### Public functions ||\n|----------------------------------------------------------------------------------------------------------------|------------------------|\n| [node](#classtensorflow_1_1ops_1_1_diag_1a53b2f11c3a488f759bd883f16f5bbbf2)`() const ` | `::tensorflow::Node *` |\n| [operator::tensorflow::Input](#classtensorflow_1_1ops_1_1_diag_1ac6d654e5b82ac6954ce4b60948da65d9)`() const ` | ` ` ` ` |\n| [operator::tensorflow::Output](#classtensorflow_1_1ops_1_1_diag_1ae8e07573b96ad7b6b69b9c4d4d4016d8)`() const ` | ` ` ` ` |\n\nPublic attributes\n-----------------\n\n### operation\n\n```text\nOperation operation\n``` \n\n### output\n\n```text\n::tensorflow::Output output\n``` \n\nPublic functions\n----------------\n\n### Diag\n\n```gdscript\n Diag(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input diagonal\n)\n``` \n\n### node\n\n```gdscript\n::tensorflow::Node * node() const \n``` \n\n### operator::tensorflow::Input\n\n```gdscript\n operator::tensorflow::Input() const \n``` \n\n### operator::tensorflow::Output\n\n```gdscript\n operator::tensorflow::Output() const \n```"]]