Restez organisé à l'aide des collections
Enregistrez et classez les contenus selon vos préférences.
flux tensoriel : : opérations : : NonMaxSuppressionV5
#include <image_ops.h>
Sélectionne goulûment un sous-ensemble de boîtes englobantes par ordre décroissant de score.
Résumé
élaguer les cases qui ont un chevauchement élevé d'intersection sur union (IOU) avec les cases précédemment sélectionnées. Les cadres de délimitation dont le score est inférieur à score_threshold
sont supprimés. Les boîtes englobantes sont fournies sous la forme [y1, x1, y2, x2], où (y1, x1) et (y2, x2) sont les coordonnées de toute paire diagonale de coins de boîte et les coordonnées peuvent être fournies sous forme normalisée (c'est-à-dire situées dans l'intervalle [0, 1]) ou absolu. Notez que cet algorithme est indépendant de l'endroit où se trouve l'origine dans le système de coordonnées et plus généralement est invariant aux transformations orthogonales et aux traductions du système de coordonnées ; ainsi, la traduction ou les réflexions du système de coordonnées entraînent la sélection des mêmes cases par l'algorithme. Le résultat de cette opération est un ensemble d’entiers indexés dans la collection d’entrée de cadres englobants représentant les cadres sélectionnés. Les coordonnées de la boîte englobante correspondant aux indices sélectionnés peuvent ensuite être obtenues à l'aide de l' tf.gather operation
. Par exemple : selected_indices = tf.image.non_max_suppression_v2( boxes, scores, max_output_size, iou_threshold, score_threshold) selected_boxes = tf.gather(boxes, selected_indices) Cette opération supporte également un mode Soft-NMS (avec pondération gaussienne) (cf Bodla et al , https://arxiv.org/abs/1704.04503 ) où les cases réduisent le score des autres cases qui se chevauchent au lieu de provoquer directement leur élagage. Pour activer ce mode Soft-NMS, définissez le paramètre soft_nms_sigma
sur une valeur supérieure à 0.
Arguments :
- scope : un objet Scope
- boxes : Un tenseur flottant 2D de forme
[num_boxes, 4]
. - scores : Un tenseur flottant 1-D de forme
[num_boxes]
représentant un score unique correspondant à chaque case (chaque rangée de cases). - max_output_size : un tenseur entier scalaire représentant le nombre maximum de cases à sélectionner par suppression non maximale.
- iou_threshold : un tenseur flottant 0-D représentant le seuil permettant de décider si les boîtes se chevauchent trop par rapport à IOU.
- score_threshold : un tenseur flottant 0-D représentant le seuil permettant de décider quand supprimer des cases en fonction du score.
- soft_nms_sigma : un tenseur flottant 0-D représentant le paramètre sigma pour Soft NMS ; voir Bodla et al (cf https://arxiv.org/abs/1704.04503 ). Lorsque
soft_nms_sigma=0.0
(ce qui est par défaut), nous revenons au NMS standard (dur).
Attributs facultatifs (voir Attrs
) :
- pad_to_max_output_size : si vrai, la sortie
selected_indices
est complétée pour avoir une longueur max_output_size
. La valeur par défaut est false.
Retours :
-
Output
selected_indices : un tenseur entier 1D de forme [M]
représentant les indices sélectionnés à partir du tenseur des boîtes, où M <= max_output_size
. -
Output
selected_scores : un tenseur flottant 1D de forme [M]
représentant les scores correspondants pour chaque boîte sélectionnée, où M <= max_output_size
. Les scores ne diffèrent des scores d'entrée correspondants que lors de l'utilisation de Soft NMS (c'est-à-dire lorsque soft_nms_sigma>0
) -
Output
valid_outputs : un tenseur entier 0-D représentant le nombre d'éléments valides dans selected_indices
, les éléments valides apparaissant en premier.
Constructeurs et Destructeurs |
---|
NonMaxSuppressionV5 (const :: tensorflow::Scope & scope, :: tensorflow::Input boxes, :: tensorflow::Input scores, :: tensorflow::Input max_output_size, :: tensorflow::Input iou_threshold, :: tensorflow::Input score_threshold, :: tensorflow::Input soft_nms_sigma)
|
NonMaxSuppressionV5 (const :: tensorflow::Scope & scope, :: tensorflow::Input boxes, :: tensorflow::Input scores, :: tensorflow::Input max_output_size, :: tensorflow::Input iou_threshold, :: tensorflow::Input score_threshold, :: tensorflow::Input soft_nms_sigma, const NonMaxSuppressionV5::Attrs & attrs) |
Attributs publics
Fonctions publiques
Fonctions statiques publiques
PadToMaxOutputSize
Attrs PadToMaxOutputSize(
bool x
)
Sauf indication contraire, le contenu de cette page est régi par une licence Creative Commons Attribution 4.0, et les échantillons de code sont régis par une licence Apache 2.0. Pour en savoir plus, consultez les Règles du site Google Developers. Java est une marque déposée d'Oracle et/ou de ses sociétés affiliées.
Dernière mise à jour le 2025/07/27 (UTC).
[null,null,["Dernière mise à jour le 2025/07/27 (UTC)."],[],[],null,["# tensorflow::ops::NonMaxSuppressionV5 Class Reference\n\ntensorflow::ops::NonMaxSuppressionV5\n====================================\n\n`#include \u003cimage_ops.h\u003e`\n\nGreedily selects a subset of bounding boxes in descending order of score,.\n\nSummary\n-------\n\npruning away boxes that have high intersection-over-union (IOU) overlap with previously selected boxes. Bounding boxes with score less than `score_threshold` are removed. Bounding boxes are supplied as \\[y1, x1, y2, x2\\], where (y1, x1) and (y2, x2) are the coordinates of any diagonal pair of box corners and the coordinates can be provided as normalized (i.e., lying in the interval \\[0, 1\\]) or absolute. Note that this algorithm is agnostic to where the origin is in the coordinate system and more generally is invariant to orthogonal transformations and translations of the coordinate system; thus translating or reflections of the coordinate system result in the same boxes being selected by the algorithm. The output of this operation is a set of integers indexing into the input collection of bounding boxes representing the selected boxes. The bounding box coordinates corresponding to the selected indices can then be obtained using the `tf.gather operation`. For example: selected_indices = tf.image.non_max_suppression_v2( boxes, scores, max_output_size, iou_threshold, score_threshold) selected_boxes = tf.gather(boxes, selected_indices) This op also supports a Soft-NMS (with Gaussian weighting) mode (c.f. Bodla et al, \u003chttps://arxiv.org/abs/1704.04503\u003e) where boxes reduce the score of other overlapping boxes instead of directly causing them to be pruned. To enable this Soft-NMS mode, set the `soft_nms_sigma` parameter to be larger than 0.\n\nArguments:\n\n- scope: A [Scope](/versions/r2.2/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope) object\n- boxes: A 2-D float tensor of shape `[num_boxes, 4]`.\n- scores: A 1-D float tensor of shape `[num_boxes]` representing a single score corresponding to each box (each row of boxes).\n- max_output_size: A scalar integer tensor representing the maximum number of boxes to be selected by non max suppression.\n- iou_threshold: A 0-D float tensor representing the threshold for deciding whether boxes overlap too much with respect to IOU.\n- score_threshold: A 0-D float tensor representing the threshold for deciding when to remove boxes based on score.\n- soft_nms_sigma: A 0-D float tensor representing the sigma parameter for Soft NMS; see Bodla et al (c.f. \u003chttps://arxiv.org/abs/1704.04503\u003e). When `soft_nms_sigma=0.0` (which is default), we fall back to standard (hard) NMS.\n\n\u003cbr /\u003e\n\nOptional attributes (see [Attrs](/versions/r2.2/api_docs/cc/struct/tensorflow/ops/non-max-suppression-v5/attrs#structtensorflow_1_1ops_1_1_non_max_suppression_v5_1_1_attrs)):\n\n- pad_to_max_output_size: If true, the output `selected_indices` is padded to be of length `max_output_size`. Defaults to false.\n\n\u003cbr /\u003e\n\nReturns:\n\n- [Output](/versions/r2.2/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) selected_indices: A 1-D integer tensor of shape `[M]` representing the selected indices from the boxes tensor, where `M \u003c= max_output_size`.\n- [Output](/versions/r2.2/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) selected_scores: A 1-D float tensor of shape `[M]` representing the corresponding scores for each selected box, where `M \u003c= max_output_size`. Scores only differ from corresponding input scores when using Soft NMS (i.e. when `soft_nms_sigma\u003e0`)\n- [Output](/versions/r2.2/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) valid_outputs: A 0-D integer tensor representing the number of valid elements in `selected_indices`, with the valid elements appearing first.\n\n\u003cbr /\u003e\n\n| ### Constructors and Destructors ||\n|---|---|\n| [NonMaxSuppressionV5](#classtensorflow_1_1ops_1_1_non_max_suppression_v5_1a58f80a7976cd835a7edb22cdfbe9d52e)`(const ::`[tensorflow::Scope](/versions/r2.2/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r2.2/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` boxes, ::`[tensorflow::Input](/versions/r2.2/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` scores, ::`[tensorflow::Input](/versions/r2.2/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` max_output_size, ::`[tensorflow::Input](/versions/r2.2/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` iou_threshold, ::`[tensorflow::Input](/versions/r2.2/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` score_threshold, ::`[tensorflow::Input](/versions/r2.2/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` soft_nms_sigma)` ||\n| [NonMaxSuppressionV5](#classtensorflow_1_1ops_1_1_non_max_suppression_v5_1a01252b578e820021a7bd241b40164251)`(const ::`[tensorflow::Scope](/versions/r2.2/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r2.2/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` boxes, ::`[tensorflow::Input](/versions/r2.2/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` scores, ::`[tensorflow::Input](/versions/r2.2/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` max_output_size, ::`[tensorflow::Input](/versions/r2.2/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` iou_threshold, ::`[tensorflow::Input](/versions/r2.2/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` score_threshold, ::`[tensorflow::Input](/versions/r2.2/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` soft_nms_sigma, const `[NonMaxSuppressionV5::Attrs](/versions/r2.2/api_docs/cc/struct/tensorflow/ops/non-max-suppression-v5/attrs#structtensorflow_1_1ops_1_1_non_max_suppression_v5_1_1_attrs)` & attrs)` ||\n\n| ### Public attributes ||\n|-----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|\n| [operation](#classtensorflow_1_1ops_1_1_non_max_suppression_v5_1aa96dc249a5c111b383bada5507ebf994) | [Operation](/versions/r2.2/api_docs/cc/class/tensorflow/operation#classtensorflow_1_1_operation) |\n| [selected_indices](#classtensorflow_1_1ops_1_1_non_max_suppression_v5_1a7c287739ff4978fb784b56224b054b21) | `::`[tensorflow::Output](/versions/r2.2/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n| [selected_scores](#classtensorflow_1_1ops_1_1_non_max_suppression_v5_1ab66338bc87549958c2b63ba5fd795530) | `::`[tensorflow::Output](/versions/r2.2/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n| [valid_outputs](#classtensorflow_1_1ops_1_1_non_max_suppression_v5_1a4099ccdeda03b3fc9290a7391e811ace) | `::`[tensorflow::Output](/versions/r2.2/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n\n| ### Public static functions ||\n|-----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|\n| [PadToMaxOutputSize](#classtensorflow_1_1ops_1_1_non_max_suppression_v5_1a6f6209fd08cfd3bd97ba74954009db05)`(bool x)` | [Attrs](/versions/r2.2/api_docs/cc/struct/tensorflow/ops/non-max-suppression-v5/attrs#structtensorflow_1_1ops_1_1_non_max_suppression_v5_1_1_attrs) |\n\n| ### Structs ||\n|------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| [tensorflow::ops::NonMaxSuppressionV5::Attrs](/versions/r2.2/api_docs/cc/struct/tensorflow/ops/non-max-suppression-v5/attrs) | Optional attribute setters for [NonMaxSuppressionV5](/versions/r2.2/api_docs/cc/class/tensorflow/ops/non-max-suppression-v5#classtensorflow_1_1ops_1_1_non_max_suppression_v5). |\n\nPublic attributes\n-----------------\n\n### operation\n\n```text\nOperation operation\n``` \n\n### selected_indices\n\n```scdoc\n::tensorflow::Output selected_indices\n``` \n\n### selected_scores\n\n```scdoc\n::tensorflow::Output selected_scores\n``` \n\n### valid_outputs\n\n```scdoc\n::tensorflow::Output valid_outputs\n``` \n\nPublic functions\n----------------\n\n### NonMaxSuppressionV5\n\n```gdscript\n NonMaxSuppressionV5(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input boxes,\n ::tensorflow::Input scores,\n ::tensorflow::Input max_output_size,\n ::tensorflow::Input iou_threshold,\n ::tensorflow::Input score_threshold,\n ::tensorflow::Input soft_nms_sigma\n)\n``` \n\n### NonMaxSuppressionV5\n\n```gdscript\n NonMaxSuppressionV5(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input boxes,\n ::tensorflow::Input scores,\n ::tensorflow::Input max_output_size,\n ::tensorflow::Input iou_threshold,\n ::tensorflow::Input score_threshold,\n ::tensorflow::Input soft_nms_sigma,\n const NonMaxSuppressionV5::Attrs & attrs\n)\n``` \n\nPublic static functions\n-----------------------\n\n### PadToMaxOutputSize\n\n```text\nAttrs PadToMaxOutputSize(\n bool x\n)\n```"]]