Tetap teratur dengan koleksi
Simpan dan kategorikan konten berdasarkan preferensi Anda.
aliran tensor:: operasi:: ParseContoh
#include <parsing_ops.h>
Mengubah vektor otak. Contoh proto (sebagai string) menjadi tensor yang diketik.
Ringkasan
Argumen:
- ruang lingkup: Objek Lingkup
- berseri: Sebuah vektor yang berisi kumpulan proto Contoh berseri biner.
- nama: Sebuah vektor yang berisi nama-nama proto yang diserialkan. Mungkin berisi, misalnya, nama kunci tabel (deskriptif) untuk proto serial yang sesuai. Ini murni berguna untuk tujuan debugging, dan keberadaan nilai di sini tidak berpengaruh pada output. Mungkin juga berupa vektor kosong jika tidak ada nama yang tersedia. Jika tidak kosong, vektor ini harus sama panjangnya dengan "berseri".
- sparse_keys: Daftar Tensor string Nsparse (skalar). Kunci yang diharapkan dalam fitur Contoh terkait dengan nilai renggang.
- solid_keys: Daftar Tensor string Ndense (skalar). Kunci yang diharapkan dalam fitur Contoh terkait dengan nilai padat.
- padat_defaults: Daftar Tensor Ndense (beberapa mungkin kosong). padat_defaults[j] memberikan nilai default ketika feature_map contoh tidak memiliki kunci_padat[j]. Jika Tensor kosong disediakan untuk Dense_defaults[j], maka Fitur Dense_keys[j] diperlukan. Tipe input disimpulkan dari solid_defaults[j], meskipun kosong. Jika padat_defaults[j] tidak kosong, dan padat_bentuk[j] terdefinisi sepenuhnya, maka bentuk padat_defaults[j] harus cocok dengan bentuk_padat[j]. Jika bentuk_padat[j] memiliki dimensi utama yang tidak terdefinisi (fitur padat langkah variabel), padat_defaults[j] harus berisi satu elemen: elemen bantalan.
- sparse_types: Daftar tipe Nsparse; tipe data data di setiap Fitur yang diberikan di sparse_keys. Saat ini ParseExample mendukung DT_FLOAT (FloatList), DT_INT64 (Int64List), dan DT_STRING (BytesList).
- solid_shapes: Daftar bentuk Ndense; bentuk data di setiap Fitur yang diberikan di solid_keys. Jumlah elemen dalam Fitur yang terkait dengan kunci_padat[j] harus selalu sama dengan bentuk_padat[j].NumEntries(). Jika bentuk_padat[j] == (D0, D1, ..., DN) maka bentuk keluaran Tensor nilai_padat[j] akan menjadi (|berseri|, D0, D1, ..., DN): Keluaran padatnya adalah hanya baris input yang ditumpuk secara batch. Ini berfungsi untuk bentuk_padat[j] = (-1, D1, ..., DN). Dalam hal ini bentuk keluaran Tensor solid_values[j] adalah (|serialized|, M, D1, .., DN), dengan M adalah jumlah maksimum blok elemen dengan panjang D1 * .... * DN , di semua entri minibatch di input. Setiap entri minibatch dengan elemen kurang dari M blok dengan panjang D1 * ... * DN akan diisi dengan elemen skalar default_value yang sesuai di sepanjang dimensi kedua.
Pengembalian:
-
OutputList
sparse_indices -
OutputList
sparse_values -
OutputList
sparse_shapes -
OutputList
nilai_padat
Atribut publik
Fungsi publik
Kecuali dinyatakan lain, konten di halaman ini dilisensikan berdasarkan Lisensi Creative Commons Attribution 4.0, sedangkan contoh kode dilisensikan berdasarkan Lisensi Apache 2.0. Untuk mengetahui informasi selengkapnya, lihat Kebijakan Situs Google Developers. Java adalah merek dagang terdaftar dari Oracle dan/atau afiliasinya.
Terakhir diperbarui pada 2025-07-27 UTC.
[null,null,["Terakhir diperbarui pada 2025-07-27 UTC."],[],[],null,["# tensorflow::ops::ParseExample Class Reference\n\ntensorflow::ops::ParseExample\n=============================\n\n`#include \u003cparsing_ops.h\u003e`\n\nTransforms a vector of brain.Example protos (as strings) into typed tensors.\n\nSummary\n-------\n\nArguments:\n\n- scope: A [Scope](/versions/r2.2/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope) object\n- serialized: A vector containing a batch of binary serialized Example protos.\n- names: A vector containing the names of the serialized protos. May contain, for example, table key (descriptive) names for the corresponding serialized protos. These are purely useful for debugging purposes, and the presence of values here has no effect on the output. May also be an empty vector if no names are available. If non-empty, this vector must be the same length as \"serialized\".\n- sparse_keys: A list of Nsparse string Tensors (scalars). The keys expected in the Examples' features associated with sparse values.\n- dense_keys: A list of Ndense string Tensors (scalars). The keys expected in the Examples' features associated with dense values.\n- dense_defaults: A list of Ndense Tensors (some may be empty). dense_defaults\\[j\\] provides default values when the example's feature_map lacks dense_key\\[j\\]. If an empty [Tensor](/versions/r2.2/api_docs/cc/class/tensorflow/tensor#classtensorflow_1_1_tensor) is provided for dense_defaults\\[j\\], then the Feature dense_keys\\[j\\] is required. The input type is inferred from dense_defaults\\[j\\], even when it's empty. If dense_defaults\\[j\\] is not empty, and dense_shapes\\[j\\] is fully defined, then the shape of dense_defaults\\[j\\] must match that of dense_shapes\\[j\\]. If dense_shapes\\[j\\] has an undefined major dimension (variable strides dense feature), dense_defaults\\[j\\] must contain a single element: the padding element.\n- sparse_types: A list of Nsparse types; the data types of data in each Feature given in sparse_keys. Currently the [ParseExample](/versions/r2.2/api_docs/cc/class/tensorflow/ops/parse-example#classtensorflow_1_1ops_1_1_parse_example) supports DT_FLOAT (FloatList), DT_INT64 (Int64List), and DT_STRING (BytesList).\n- dense_shapes: A list of Ndense shapes; the shapes of data in each Feature given in dense_keys. The number of elements in the Feature corresponding to dense_key\\[j\\] must always equal dense_shapes\\[j\\].NumEntries(). If dense_shapes\\[j\\] == (D0, D1, ..., DN) then the shape of output [Tensor](/versions/r2.2/api_docs/cc/class/tensorflow/tensor#classtensorflow_1_1_tensor) dense_values\\[j\\] will be (\\|serialized\\|, D0, D1, ..., DN): The dense outputs are just the inputs row-stacked by batch. This works for dense_shapes\\[j\\] = (-1, D1, ..., DN). In this case the shape of the output [Tensor](/versions/r2.2/api_docs/cc/class/tensorflow/tensor#classtensorflow_1_1_tensor) dense_values\\[j\\] will be (\\|serialized\\|, M, D1, .., DN), where M is the maximum number of blocks of elements of length D1 \\* .... \\* DN, across all minibatch entries in the input. [Any](/versions/r2.2/api_docs/cc/class/tensorflow/ops/any#classtensorflow_1_1ops_1_1_any) minibatch entry with less than M blocks of elements of length D1 \\* ... \\* DN will be padded with the corresponding default_value scalar element along the second dimension.\n\n\u003cbr /\u003e\n\nReturns:\n\n- `OutputList` sparse_indices\n- `OutputList` sparse_values\n- `OutputList` sparse_shapes\n- `OutputList` dense_values\n\n\u003cbr /\u003e\n\n| ### Constructors and Destructors ||\n|---|---|\n| [ParseExample](#classtensorflow_1_1ops_1_1_parse_example_1abe97c3d8689593c4b7fc474df7232628)`(const ::`[tensorflow::Scope](/versions/r2.2/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r2.2/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` serialized, ::`[tensorflow::Input](/versions/r2.2/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` names, ::`[tensorflow::InputList](/versions/r2.2/api_docs/cc/class/tensorflow/input-list#classtensorflow_1_1_input_list)` sparse_keys, ::`[tensorflow::InputList](/versions/r2.2/api_docs/cc/class/tensorflow/input-list#classtensorflow_1_1_input_list)` dense_keys, ::`[tensorflow::InputList](/versions/r2.2/api_docs/cc/class/tensorflow/input-list#classtensorflow_1_1_input_list)` dense_defaults, const DataTypeSlice & sparse_types, const gtl::ArraySlice\u003c PartialTensorShape \u003e & dense_shapes)` ||\n\n| ### Public attributes ||\n|------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|\n| [dense_values](#classtensorflow_1_1ops_1_1_parse_example_1a0621ad91c166916f20c4d8d38da78674) | `::`[tensorflow::OutputList](/versions/r2.2/api_docs/cc/group/core#group__core_1gab449e6a3abd500c2f4ea93f9e89ba96c) |\n| [operation](#classtensorflow_1_1ops_1_1_parse_example_1a68504c285f005f993b30252db06fbee0) | [Operation](/versions/r2.2/api_docs/cc/class/tensorflow/operation#classtensorflow_1_1_operation) |\n| [sparse_indices](#classtensorflow_1_1ops_1_1_parse_example_1a9f9016a149620b00fad16bff88591905) | `::`[tensorflow::OutputList](/versions/r2.2/api_docs/cc/group/core#group__core_1gab449e6a3abd500c2f4ea93f9e89ba96c) |\n| [sparse_shapes](#classtensorflow_1_1ops_1_1_parse_example_1a39e169f2156ee03b9755c6e4b7bf9641) | `::`[tensorflow::OutputList](/versions/r2.2/api_docs/cc/group/core#group__core_1gab449e6a3abd500c2f4ea93f9e89ba96c) |\n| [sparse_values](#classtensorflow_1_1ops_1_1_parse_example_1a39241716b69f84112f769ddf426c1a02) | `::`[tensorflow::OutputList](/versions/r2.2/api_docs/cc/group/core#group__core_1gab449e6a3abd500c2f4ea93f9e89ba96c) |\n\nPublic attributes\n-----------------\n\n### dense_values\n\n```scdoc\n::tensorflow::OutputList dense_values\n``` \n\n### operation\n\n```text\nOperation operation\n``` \n\n### sparse_indices\n\n```scdoc\n::tensorflow::OutputList sparse_indices\n``` \n\n### sparse_shapes\n\n```scdoc\n::tensorflow::OutputList sparse_shapes\n``` \n\n### sparse_values\n\n```scdoc\n::tensorflow::OutputList sparse_values\n``` \n\nPublic functions\n----------------\n\n### ParseExample\n\n```gdscript\n ParseExample(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input serialized,\n ::tensorflow::Input names,\n ::tensorflow::InputList sparse_keys,\n ::tensorflow::InputList dense_keys,\n ::tensorflow::InputList dense_defaults,\n const DataTypeSlice & sparse_types,\n const gtl::ArraySlice\u003c PartialTensorShape \u003e & dense_shapes\n)\n```"]]