Restez organisé à l'aide des collections
Enregistrez et classez les contenus selon vos préférences.
flux tensoriel : : opérations : : SparseApplyAdagrad
#include <training_ops.h>
Mettez à jour les entrées pertinentes dans '*var' et '*accum' selon le schéma adagrad.
Résumé
C'est pour les lignes pour lesquelles nous avons grad, nous mettons à jour var et accumulons comme suit :
$$accum += grad * grad$$
$$var -= lr * grad * (1 / sqrt(accum))$$
Arguments :
- scope : un objet Scope
- var : doit provenir d'une variable ().
- cumul : doit provenir d'une variable ().
- gd : Taux d’apprentissage. Ça doit être un scalaire.
- grad : Le dégradé.
- indices : Un vecteur d'indices dans la première dimension de var et cumul.
Attributs facultatifs (voir Attrs
) :
- use_locking : Si
True
, la mise à jour des tenseurs var et accum sera protégée par un verrou ; sinon, le comportement n'est pas défini, mais peut présenter moins de conflits.
Retours :
Constructeurs et Destructeurs |
---|
SparseApplyAdagrad (const :: tensorflow::Scope & scope, :: tensorflow::Input var, :: tensorflow::Input accum, :: tensorflow::Input lr, :: tensorflow::Input grad, :: tensorflow::Input indices)
|
SparseApplyAdagrad (const :: tensorflow::Scope & scope, :: tensorflow::Input var, :: tensorflow::Input accum, :: tensorflow::Input lr, :: tensorflow::Input grad, :: tensorflow::Input indices, const SparseApplyAdagrad::Attrs & attrs) |
Attributs publics
Fonctions publiques
nœud
::tensorflow::Node * node() const
operator::tensorflow::Input() const
opérateur :: tensorflow :: Sortie
operator::tensorflow::Output() const
Fonctions statiques publiques
Emplacements de mise à jour
Attrs UpdateSlots(
bool x
)
UtiliserVerrouillage
Attrs UseLocking(
bool x
)
Sauf indication contraire, le contenu de cette page est régi par une licence Creative Commons Attribution 4.0, et les échantillons de code sont régis par une licence Apache 2.0. Pour en savoir plus, consultez les Règles du site Google Developers. Java est une marque déposée d'Oracle et/ou de ses sociétés affiliées.
Dernière mise à jour le 2025/07/27 (UTC).
[null,null,["Dernière mise à jour le 2025/07/27 (UTC)."],[],[],null,["# tensorflow::ops::SparseApplyAdagrad Class Reference\n\ntensorflow::ops::SparseApplyAdagrad\n===================================\n\n`#include \u003ctraining_ops.h\u003e`\n\nUpdate relevant entries in '\\*var' and '\\*accum' according to the adagrad scheme.\n\nSummary\n-------\n\nThat is for rows we have grad for, we update var and accum as follows: \n$$accum += grad \\* grad$$ \n$$var -= lr \\* grad \\* (1 / sqrt(accum))$$\n\n\u003cbr /\u003e\n\nArguments:\n\n- scope: A [Scope](/versions/r2.2/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope) object\n- var: Should be from a Variable().\n- accum: Should be from a Variable().\n- lr: Learning rate. Must be a scalar.\n- grad: The gradient.\n- indices: A vector of indices into the first dimension of var and accum.\n\n\u003cbr /\u003e\n\nOptional attributes (see [Attrs](/versions/r2.2/api_docs/cc/struct/tensorflow/ops/sparse-apply-adagrad/attrs#structtensorflow_1_1ops_1_1_sparse_apply_adagrad_1_1_attrs)):\n\n- use_locking: If `True`, updating of the var and accum tensors will be protected by a lock; otherwise the behavior is undefined, but may exhibit less contention.\n\n\u003cbr /\u003e\n\nReturns:\n\n- [Output](/versions/r2.2/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output): Same as \"var\".\n\n\u003cbr /\u003e\n\n| ### Constructors and Destructors ||\n|---|---|\n| [SparseApplyAdagrad](#classtensorflow_1_1ops_1_1_sparse_apply_adagrad_1a8654c81ae7fb822d3d68cf07933298c5)`(const ::`[tensorflow::Scope](/versions/r2.2/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r2.2/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` var, ::`[tensorflow::Input](/versions/r2.2/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` accum, ::`[tensorflow::Input](/versions/r2.2/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` lr, ::`[tensorflow::Input](/versions/r2.2/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` grad, ::`[tensorflow::Input](/versions/r2.2/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` indices)` ||\n| [SparseApplyAdagrad](#classtensorflow_1_1ops_1_1_sparse_apply_adagrad_1a065426b919fd035ddb0cff7f0d0383b2)`(const ::`[tensorflow::Scope](/versions/r2.2/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r2.2/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` var, ::`[tensorflow::Input](/versions/r2.2/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` accum, ::`[tensorflow::Input](/versions/r2.2/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` lr, ::`[tensorflow::Input](/versions/r2.2/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` grad, ::`[tensorflow::Input](/versions/r2.2/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` indices, const `[SparseApplyAdagrad::Attrs](/versions/r2.2/api_docs/cc/struct/tensorflow/ops/sparse-apply-adagrad/attrs#structtensorflow_1_1ops_1_1_sparse_apply_adagrad_1_1_attrs)` & attrs)` ||\n\n| ### Public attributes ||\n|--------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|\n| [operation](#classtensorflow_1_1ops_1_1_sparse_apply_adagrad_1a583fccf8242cbba9ca0966f1f164f279) | [Operation](/versions/r2.2/api_docs/cc/class/tensorflow/operation#classtensorflow_1_1_operation) |\n| [out](#classtensorflow_1_1ops_1_1_sparse_apply_adagrad_1acfcb53bfa0178d5f4531764444a70568) | `::`[tensorflow::Output](/versions/r2.2/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n\n| ### Public functions ||\n|--------------------------------------------------------------------------------------------------------------------------------|------------------------|\n| [node](#classtensorflow_1_1ops_1_1_sparse_apply_adagrad_1a82b4ae6551f4a0d9456891da05823903)`() const ` | `::tensorflow::Node *` |\n| [operator::tensorflow::Input](#classtensorflow_1_1ops_1_1_sparse_apply_adagrad_1a1bd37515accb4c3505c3432dbcaaff2d)`() const ` | ` ` ` ` |\n| [operator::tensorflow::Output](#classtensorflow_1_1ops_1_1_sparse_apply_adagrad_1ab850cf3221b4383f0d773d8211173ac7)`() const ` | ` ` ` ` |\n\n| ### Public static functions ||\n|--------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|\n| [UpdateSlots](#classtensorflow_1_1ops_1_1_sparse_apply_adagrad_1afa53af54d646c0cd056c3e5d9ae19970)`(bool x)` | [Attrs](/versions/r2.2/api_docs/cc/struct/tensorflow/ops/sparse-apply-adagrad/attrs#structtensorflow_1_1ops_1_1_sparse_apply_adagrad_1_1_attrs) |\n| [UseLocking](#classtensorflow_1_1ops_1_1_sparse_apply_adagrad_1ab561ae2919f29d971d0c0b28448f1695)`(bool x)` | [Attrs](/versions/r2.2/api_docs/cc/struct/tensorflow/ops/sparse-apply-adagrad/attrs#structtensorflow_1_1ops_1_1_sparse_apply_adagrad_1_1_attrs) |\n\n| ### Structs ||\n|---------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| [tensorflow::ops::SparseApplyAdagrad::Attrs](/versions/r2.2/api_docs/cc/struct/tensorflow/ops/sparse-apply-adagrad/attrs) | Optional attribute setters for [SparseApplyAdagrad](/versions/r2.2/api_docs/cc/class/tensorflow/ops/sparse-apply-adagrad#classtensorflow_1_1ops_1_1_sparse_apply_adagrad). |\n\nPublic attributes\n-----------------\n\n### operation\n\n```text\nOperation operation\n``` \n\n### out\n\n```text\n::tensorflow::Output out\n``` \n\nPublic functions\n----------------\n\n### SparseApplyAdagrad\n\n```gdscript\n SparseApplyAdagrad(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input var,\n ::tensorflow::Input accum,\n ::tensorflow::Input lr,\n ::tensorflow::Input grad,\n ::tensorflow::Input indices\n)\n``` \n\n### SparseApplyAdagrad\n\n```gdscript\n SparseApplyAdagrad(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input var,\n ::tensorflow::Input accum,\n ::tensorflow::Input lr,\n ::tensorflow::Input grad,\n ::tensorflow::Input indices,\n const SparseApplyAdagrad::Attrs & attrs\n)\n``` \n\n### node\n\n```gdscript\n::tensorflow::Node * node() const \n``` \n\n### operator::tensorflow::Input\n\n```gdscript\n operator::tensorflow::Input() const \n``` \n\n### operator::tensorflow::Output\n\n```gdscript\n operator::tensorflow::Output() const \n``` \n\nPublic static functions\n-----------------------\n\n### UpdateSlots\n\n```text\nAttrs UpdateSlots(\n bool x\n)\n``` \n\n### UseLocking\n\n```text\nAttrs UseLocking(\n bool x\n)\n```"]]