コレクションでコンテンツを整理
必要に応じて、コンテンツの保存と分類を行います。
テンソルフロー::作戦:: Conv3D
#include <nn_ops.h>
5 次元input
とfilter
テンソルを指定して 3 次元畳み込みを計算します。
まとめ
信号処理における相互相関は、2 つの波形の一方に適用されるタイムラグの関数としての 2 つの波形の類似性の尺度です。これは、スライディング ドット積またはスライディング内積とも呼ばれます。
Conv3D は相互相関の形式を実装しています。
引数:
- スコープ:スコープオブジェクト
- 入力: Shape
[batch, in_depth, in_height, in_width, in_channels]
。 - フィルター: 形状
[filter_depth, filter_height, filter_width, in_channels, out_channels]
。 in_channels
input
とfilter
の間で一致する必要があります。 - strides: 長さ 5 の 1 次元テンソル。
input
の各次元のスライディング ウィンドウのストライド。 strides[0] = strides[4] = 1
でなければなりません。 - padding: 使用するパディング アルゴリズムのタイプ。
オプションの属性 ( Attrs
を参照):
- data_format: 入力データと出力データのデータ形式。デフォルトの形式「NDHWC」では、データは[バッチ、深さ、高さ、幅、チャネル]の順に保存されます。あるいは、形式を「NCDHW」、データの保存順序を [batch、in_channels、in_ Depth、in_height、in_width] にすることもできます。
- dilations: 長さ 5 の 1 次元テンソル。
input
の各次元の膨張係数。 k > 1 に設定すると、その次元の各フィルター要素間に k-1 個のスキップされたセルが存在します。ディメンションの順序はdata_format
の値によって決まります。詳細については上記を参照してください。バッチ内の膨張と深さの寸法は 1 である必要があります。
戻り値:
パブリック属性
公共機能
ノード
::tensorflow::Node * node() const
operator::tensorflow::Input() const
演算子::tensorflow::出力
operator::tensorflow::Output() const
パブリック静的関数
Attrs DataFormat(
StringPiece x
)
拡張
Attrs Dilations(
const gtl::ArraySlice< int > & x
)
特に記載のない限り、このページのコンテンツはクリエイティブ・コモンズの表示 4.0 ライセンスにより使用許諾されます。コードサンプルは Apache 2.0 ライセンスにより使用許諾されます。詳しくは、Google Developers サイトのポリシーをご覧ください。Java は Oracle および関連会社の登録商標です。
最終更新日 2025-07-26 UTC。
[null,null,["最終更新日 2025-07-26 UTC。"],[],[],null,["# tensorflow::ops::Conv3D Class Reference\n\ntensorflow::ops::Conv3D\n=======================\n\n`#include \u003cnn_ops.h\u003e`\n\nComputes a 3-D convolution given 5-D `input` and `filter` tensors.\n\nSummary\n-------\n\nIn signal processing, cross-correlation is a measure of similarity of two waveforms as a function of a time-lag applied to one of them. This is also known as a sliding dot product or sliding inner-product.\n\nOur [Conv3D](/versions/r2.3/api_docs/cc/class/tensorflow/ops/conv3-d#classtensorflow_1_1ops_1_1_conv3_d) implements a form of cross-correlation.\n\nArguments:\n\n- scope: A [Scope](/versions/r2.3/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope) object\n- input: Shape `[batch, in_depth, in_height, in_width, in_channels]`.\n- filter: Shape `[filter_depth, filter_height, filter_width, in_channels, out_channels]`. `in_channels` must match between `input` and `filter`.\n- strides: 1-D tensor of length 5. The stride of the sliding window for each dimension of `input`. Must have `strides[0] = strides[4] = 1`.\n- padding: The type of padding algorithm to use.\n\n\u003cbr /\u003e\n\nOptional attributes (see [Attrs](/versions/r2.3/api_docs/cc/struct/tensorflow/ops/conv3-d/attrs#structtensorflow_1_1ops_1_1_conv3_d_1_1_attrs)):\n\n- data_format: The data format of the input and output data. With the default format \"NDHWC\", the data is stored in the order of: \\[batch, in_depth, in_height, in_width, in_channels\\]. Alternatively, the format could be \"NCDHW\", the data storage order is: \\[batch, in_channels, in_depth, in_height, in_width\\].\n- dilations: 1-D tensor of length 5. The dilation factor for each dimension of `input`. If set to k \\\u003e 1, there will be k-1 skipped cells between each filter element on that dimension. The dimension order is determined by the value of `data_format`, see above for details. Dilations in the batch and depth dimensions must be 1.\n\n\u003cbr /\u003e\n\nReturns:\n\n- [Output](/versions/r2.3/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output): The output tensor.\n\n\u003cbr /\u003e\n\n| ### Constructors and Destructors ||\n|---|---|\n| [Conv3D](#classtensorflow_1_1ops_1_1_conv3_d_1aef63039997c4f9586d2b8627e3cf5c5a)`(const ::`[tensorflow::Scope](/versions/r2.3/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r2.3/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` input, ::`[tensorflow::Input](/versions/r2.3/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` filter, const gtl::ArraySlice\u003c int \u003e & strides, StringPiece padding)` ||\n| [Conv3D](#classtensorflow_1_1ops_1_1_conv3_d_1abb396c1cb8bf48f57ad11862ac7406ad)`(const ::`[tensorflow::Scope](/versions/r2.3/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r2.3/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` input, ::`[tensorflow::Input](/versions/r2.3/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` filter, const gtl::ArraySlice\u003c int \u003e & strides, StringPiece padding, const `[Conv3D::Attrs](/versions/r2.3/api_docs/cc/struct/tensorflow/ops/conv3-d/attrs#structtensorflow_1_1ops_1_1_conv3_d_1_1_attrs)` & attrs)` ||\n\n| ### Public attributes ||\n|-------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|\n| [operation](#classtensorflow_1_1ops_1_1_conv3_d_1a34a87b1c84b82ab0a1dec637ee277ced) | [Operation](/versions/r2.3/api_docs/cc/class/tensorflow/operation#classtensorflow_1_1_operation) |\n| [output](#classtensorflow_1_1ops_1_1_conv3_d_1a426b9a63272f1905184fdfd1b78ba33a) | `::`[tensorflow::Output](/versions/r2.3/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n\n| ### Public functions ||\n|-------------------------------------------------------------------------------------------------------------------|------------------------|\n| [node](#classtensorflow_1_1ops_1_1_conv3_d_1a33ab1a0f2fa69089a8f835175d1dc732)`() const ` | `::tensorflow::Node *` |\n| [operator::tensorflow::Input](#classtensorflow_1_1ops_1_1_conv3_d_1a418b91ef5b6437901248965d572533e5)`() const ` | ` ` ` ` |\n| [operator::tensorflow::Output](#classtensorflow_1_1ops_1_1_conv3_d_1abebfb46d5b9c472aebb4f25ad6d2eeb6)`() const ` | ` ` ` ` |\n\n| ### Public static functions ||\n|-------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|\n| [DataFormat](#classtensorflow_1_1ops_1_1_conv3_d_1a148ca9c798353ee9073c60f57e45a41f)`(StringPiece x)` | [Attrs](/versions/r2.3/api_docs/cc/struct/tensorflow/ops/conv3-d/attrs#structtensorflow_1_1ops_1_1_conv3_d_1_1_attrs) |\n| [Dilations](#classtensorflow_1_1ops_1_1_conv3_d_1a90d138624ebc69f365e225d25ece6e2a)`(const gtl::ArraySlice\u003c int \u003e & x)` | [Attrs](/versions/r2.3/api_docs/cc/struct/tensorflow/ops/conv3-d/attrs#structtensorflow_1_1ops_1_1_conv3_d_1_1_attrs) |\n\n| ### Structs ||\n|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|\n| [tensorflow::ops::Conv3D::Attrs](/versions/r2.3/api_docs/cc/struct/tensorflow/ops/conv3-d/attrs) | Optional attribute setters for [Conv3D](/versions/r2.3/api_docs/cc/class/tensorflow/ops/conv3-d#classtensorflow_1_1ops_1_1_conv3_d). |\n\nPublic attributes\n-----------------\n\n### operation\n\n```text\nOperation operation\n``` \n\n### output\n\n```text\n::tensorflow::Output output\n``` \n\nPublic functions\n----------------\n\n### Conv3D\n\n```gdscript\n Conv3D(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input input,\n ::tensorflow::Input filter,\n const gtl::ArraySlice\u003c int \u003e & strides,\n StringPiece padding\n)\n``` \n\n### Conv3D\n\n```gdscript\n Conv3D(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input input,\n ::tensorflow::Input filter,\n const gtl::ArraySlice\u003c int \u003e & strides,\n StringPiece padding,\n const Conv3D::Attrs & attrs\n)\n``` \n\n### node\n\n```gdscript\n::tensorflow::Node * node() const \n``` \n\n### operator::tensorflow::Input\n\n```gdscript\n operator::tensorflow::Input() const \n``` \n\n### operator::tensorflow::Output\n\n```gdscript\n operator::tensorflow::Output() const \n``` \n\nPublic static functions\n-----------------------\n\n### DataFormat\n\n```text\nAttrs DataFormat(\n StringPiece x\n)\n``` \n\n### Dilations\n\n```gdscript\nAttrs Dilations(\n const gtl::ArraySlice\u003c int \u003e & x\n)\n```"]]