Restez organisé à l'aide des collections
Enregistrez et classez les contenus selon vos préférences.
flux tensoriel : : opérations : : RecadrerEtRedimensionner
#include <image_ops.h>
Extrait les recadrages du tenseur de l'image d'entrée et les redimensionne.
Résumé
Extrait les cultures du tenseur de l'image d'entrée et les redimensionne à l'aide d'un échantillonnage bilinéaire ou d'un échantillonnage du voisin le plus proche (éventuellement avec changement de rapport hauteur/largeur) à une taille de sortie commune spécifiée par crop_size
. Ceci est plus général que l'opération crop_to_bounding_box
qui extrait une tranche de taille fixe de l'image d'entrée et n'autorise pas le redimensionnement ou le changement de rapport d'aspect.
Renvoie un tenseur avec crops
à partir de l' image
d'entrée aux positions définies aux emplacements du cadre de délimitation dans boxes
. Les zones recadrées sont toutes redimensionnées (avec interpolation bilinéaire ou du voisin le plus proche) à une size = [crop_height, crop_width]
. Le résultat est un tenseur 4D [num_boxes, crop_height, crop_width, depth]
. Le redimensionnement est aligné sur les coins. En particulier, si boxes = [[0, 0, 1, 1]]
, la méthode donnera des résultats identiques à l'utilisation de tf.image.resize_bilinear()
ou tf.image.resize_nearest_neighbor()
(dépend de l'argument de la method
) avec align_corners=True
.
Arguments :
- scope : un objet Scope
- image : Un tenseur de forme 4D
[batch, image_height, image_width, depth]
. image_height
et image_width
doivent être positifs. - boxes : Un tenseur 2D de forme
[num_boxes, 4]
. La i
-ième ligne du tenseur spécifie les coordonnées d'une boîte dans l'image box_ind[i]
et est spécifiée en coordonnées normalisées [y1, x1, y2, x2]
. Une valeur de coordonnée normalisée de y
est mappée à la coordonnée de l'image à y * (image_height - 1)
, de sorte que l'intervalle [0, 1]
de hauteur d'image normalisée soit mappé à [0, image_height - 1]
dans les coordonnées de hauteur d'image. Nous autorisons y1
> y2
, auquel cas le recadrage échantillonné est une version inversée de haut en bas de l'image originale. La dimension de largeur est traitée de la même manière. Les coordonnées normalisées en dehors de la plage [0, 1]
sont autorisées, auquel cas nous utilisons extrapolation_value
pour extrapoler les valeurs de l'image d'entrée. - box_ind : un tenseur 1D de forme
[num_boxes]
avec des valeurs int32 dans [0, batch)
. La valeur de box_ind[i]
spécifie l’image à laquelle la i
-ième boîte fait référence. - crop_size : un tenseur 1D de 2 éléments,
size = [crop_height, crop_width]
. Tous les patchs d'image recadrés sont redimensionnés à cette taille. Le rapport hauteur/largeur du contenu de l'image n'est pas conservé. crop_height
et crop_width
doivent être positifs.
Attributs facultatifs (voir Attrs
) :
- method : une chaîne spécifiant la méthode d’échantillonnage pour le redimensionnement. Il peut être soit
"bilinear"
, soit "nearest"
et est par défaut "bilinear"
. Actuellement, deux méthodes d'échantillonnage sont prises en charge : bilinéaire et voisin le plus proche. - extrapolation_value : valeur utilisée pour l'extrapolation, le cas échéant.
Retours :
-
Output
: Un tenseur 4D de forme [num_boxes, crop_height, crop_width, depth]
.
Attributs publics
Fonctions publiques
nœud
::tensorflow::Node * node() const
operator::tensorflow::Input() const
opérateur :: tensorflow :: Sortie
operator::tensorflow::Output() const
Fonctions statiques publiques
Attrs ExtrapolationValue(
float x
)
Méthode
Attrs Method(
StringPiece x
)
Sauf indication contraire, le contenu de cette page est régi par une licence Creative Commons Attribution 4.0, et les échantillons de code sont régis par une licence Apache 2.0. Pour en savoir plus, consultez les Règles du site Google Developers. Java est une marque déposée d'Oracle et/ou de ses sociétés affiliées.
Dernière mise à jour le 2025/07/26 (UTC).
[null,null,["Dernière mise à jour le 2025/07/26 (UTC)."],[],[],null,["# tensorflow::ops::CropAndResize Class Reference\n\ntensorflow::ops::CropAndResize\n==============================\n\n`#include \u003cimage_ops.h\u003e`\n\nExtracts crops from the input image tensor and resizes them.\n\nSummary\n-------\n\nExtracts crops from the input image tensor and resizes them using bilinear sampling or nearest neighbor sampling (possibly with aspect ratio change) to a common output size specified by `crop_size`. This is more general than the `crop_to_bounding_box` op which extracts a fixed size slice from the input image and does not allow resizing or aspect ratio change.\n\nReturns a tensor with `crops` from the input `image` at positions defined at the bounding box locations in `boxes`. The cropped boxes are all resized (with bilinear or nearest neighbor interpolation) to a fixed `size = [crop_height, crop_width]`. The result is a 4-D tensor `[num_boxes, crop_height, crop_width, depth]`. The resizing is corner aligned. In particular, if `boxes = [[0, 0, 1, 1]]`, the method will give identical results to using `tf.image.resize_bilinear()` or `tf.image.resize_nearest_neighbor()`(depends on the `method` argument) with `align_corners=True`.\n\nArguments:\n\n- scope: A [Scope](/versions/r2.3/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope) object\n- image: A 4-D tensor of shape `[batch, image_height, image_width, depth]`. Both `image_height` and `image_width` need to be positive.\n- boxes: A 2-D tensor of shape `[num_boxes, 4]`. The `i`-th row of the tensor specifies the coordinates of a box in the `box_ind[i]` image and is specified in normalized coordinates `[y1, x1, y2, x2]`. A normalized coordinate value of `y` is mapped to the image coordinate at `y * (image_height - 1)`, so as the `[0, 1]` interval of normalized image height is mapped to `[0, image_height - 1]` in image height coordinates. We do allow `y1` \\\u003e `y2`, in which case the sampled crop is an up-down flipped version of the original image. The width dimension is treated similarly. Normalized coordinates outside the `[0, 1]` range are allowed, in which case we use `extrapolation_value` to extrapolate the input image values.\n- box_ind: A 1-D tensor of shape `[num_boxes]` with int32 values in `[0, batch)`. The value of `box_ind[i]` specifies the image that the `i`-th box refers to.\n- crop_size: A 1-D tensor of 2 elements, `size = [crop_height, crop_width]`. [All](/versions/r2.3/api_docs/cc/class/tensorflow/ops/all#classtensorflow_1_1ops_1_1_all) cropped image patches are resized to this size. The aspect ratio of the image content is not preserved. Both `crop_height` and `crop_width` need to be positive.\n\n\u003cbr /\u003e\n\nOptional attributes (see [Attrs](/versions/r2.3/api_docs/cc/struct/tensorflow/ops/crop-and-resize/attrs#structtensorflow_1_1ops_1_1_crop_and_resize_1_1_attrs)):\n\n- method: A string specifying the sampling method for resizing. It can be either `\"bilinear\"` or `\"nearest\"` and default to `\"bilinear\"`. Currently two sampling methods are supported: Bilinear and Nearest Neighbor.\n- extrapolation_value: Value used for extrapolation, when applicable.\n\n\u003cbr /\u003e\n\nReturns:\n\n- [Output](/versions/r2.3/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output): A 4-D tensor of shape `[num_boxes, crop_height, crop_width, depth]`.\n\n\u003cbr /\u003e\n\n| ### Constructors and Destructors ||\n|---|---|\n| [CropAndResize](#classtensorflow_1_1ops_1_1_crop_and_resize_1ab17f07d2b9db2923f4f16cc6ddd10c9d)`(const ::`[tensorflow::Scope](/versions/r2.3/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r2.3/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` image, ::`[tensorflow::Input](/versions/r2.3/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` boxes, ::`[tensorflow::Input](/versions/r2.3/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` box_ind, ::`[tensorflow::Input](/versions/r2.3/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` crop_size)` ||\n| [CropAndResize](#classtensorflow_1_1ops_1_1_crop_and_resize_1adb1d93c1c956c1d654b701bc078ab6ae)`(const ::`[tensorflow::Scope](/versions/r2.3/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r2.3/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` image, ::`[tensorflow::Input](/versions/r2.3/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` boxes, ::`[tensorflow::Input](/versions/r2.3/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` box_ind, ::`[tensorflow::Input](/versions/r2.3/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` crop_size, const `[CropAndResize::Attrs](/versions/r2.3/api_docs/cc/struct/tensorflow/ops/crop-and-resize/attrs#structtensorflow_1_1ops_1_1_crop_and_resize_1_1_attrs)` & attrs)` ||\n\n| ### Public attributes ||\n|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|\n| [crops](#classtensorflow_1_1ops_1_1_crop_and_resize_1a3d1569c38bfdd7881539d76880193614) | `::`[tensorflow::Output](/versions/r2.3/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n| [operation](#classtensorflow_1_1ops_1_1_crop_and_resize_1ade78876fbd90696b4364af105b775c29) | [Operation](/versions/r2.3/api_docs/cc/class/tensorflow/operation#classtensorflow_1_1_operation) |\n\n| ### Public functions ||\n|---------------------------------------------------------------------------------------------------------------------------|------------------------|\n| [node](#classtensorflow_1_1ops_1_1_crop_and_resize_1a44e6253b604ef5a11098dd6b01034a73)`() const ` | `::tensorflow::Node *` |\n| [operator::tensorflow::Input](#classtensorflow_1_1ops_1_1_crop_and_resize_1a009f32b1c13c815bcb4f1e20bbb506d9)`() const ` | ` ` ` ` |\n| [operator::tensorflow::Output](#classtensorflow_1_1ops_1_1_crop_and_resize_1a27ee3121d018ca29ecc4d112bfe6dbf7)`() const ` | ` ` ` ` |\n\n| ### Public static functions ||\n|-----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|\n| [ExtrapolationValue](#classtensorflow_1_1ops_1_1_crop_and_resize_1a24585f2ae8f486ed7cf26b7636398bbb)`(float x)` | [Attrs](/versions/r2.3/api_docs/cc/struct/tensorflow/ops/crop-and-resize/attrs#structtensorflow_1_1ops_1_1_crop_and_resize_1_1_attrs) |\n| [Method](#classtensorflow_1_1ops_1_1_crop_and_resize_1a430830e07a336ae16aa3093ed0480d8d)`(StringPiece x)` | [Attrs](/versions/r2.3/api_docs/cc/struct/tensorflow/ops/crop-and-resize/attrs#structtensorflow_1_1ops_1_1_crop_and_resize_1_1_attrs) |\n\n| ### Structs ||\n|-----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| [tensorflow::ops::CropAndResize::Attrs](/versions/r2.3/api_docs/cc/struct/tensorflow/ops/crop-and-resize/attrs) | Optional attribute setters for [CropAndResize](/versions/r2.3/api_docs/cc/class/tensorflow/ops/crop-and-resize#classtensorflow_1_1ops_1_1_crop_and_resize). |\n\nPublic attributes\n-----------------\n\n### crops\n\n```text\n::tensorflow::Output crops\n``` \n\n### operation\n\n```text\nOperation operation\n``` \n\nPublic functions\n----------------\n\n### CropAndResize\n\n```gdscript\n CropAndResize(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input image,\n ::tensorflow::Input boxes,\n ::tensorflow::Input box_ind,\n ::tensorflow::Input crop_size\n)\n``` \n\n### CropAndResize\n\n```gdscript\n CropAndResize(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input image,\n ::tensorflow::Input boxes,\n ::tensorflow::Input box_ind,\n ::tensorflow::Input crop_size,\n const CropAndResize::Attrs & attrs\n)\n``` \n\n### node\n\n```gdscript\n::tensorflow::Node * node() const \n``` \n\n### operator::tensorflow::Input\n\n```gdscript\n operator::tensorflow::Input() const \n``` \n\n### operator::tensorflow::Output\n\n```gdscript\n operator::tensorflow::Output() const \n``` \n\nPublic static functions\n-----------------------\n\n### ExtrapolationValue\n\n```text\nAttrs ExtrapolationValue(\n float x\n)\n``` \n\n### Method\n\n```text\nAttrs Method(\n StringPiece x\n)\n```"]]