Restez organisé à l'aide des collections
Enregistrez et classez les contenus selon vos préférences.
flux tensoriel : : opérations : : DésérialiserSparse
#include <sparse_ops.h>
Désérialisez les objets SparseTensor
.
Résumé
L'entrée serialized_sparse
doit avoir la forme [?, ?, ..., ?, 3]
où la dernière dimension stocke les objets SparseTensor
sérialisés et les N autres dimensions (N >= 0) correspondent à un lot. Les rangs des objets SparseTensor
d'origine doivent tous correspondre. Lorsque le SparseTensor
final est créé, son rang est le rang des objets SparseTensor
entrants plus N ; les tenseurs clairsemés ont été concaténés selon de nouvelles dimensions, une pour chaque lot.
Les valeurs de forme de l'objet SparseTensor
de sortie pour les dimensions d'origine sont les valeurs maximales des valeurs de forme des objets SparseTensor
d'entrée pour les dimensions correspondantes. Les nouvelles dimensions correspondent à la taille du lot.
Les indices des objets SparseTensor
d'entrée sont supposés classés dans l'ordre lexicographique standard. Si ce n'est pas le cas, après cette étape, exécutez SparseReorder
pour restaurer l'ordre des index.
Par exemple, si l'entrée sérialisée est une matrice [2 x 3]
représentant deux objets SparseTensor
d'origine :
index = [ 0]
[10]
[20]
values = [1, 2, 3]
shape = [50]
et
index = [ 2]
[10]
values = [4, 5]
shape = [30]
alors le SparseTensor
désérialisé final sera :
index = [0 0]
[0 10]
[0 20]
[1 2]
[1 10]
values = [1, 2, 3, 4, 5]
shape = [2 50]
Arguments :
- scope : un objet Scope
- serialized_sparse : les objets
SparseTensor
sérialisés. La dernière dimension doit avoir 3 colonnes. - dtype : le
dtype
des objets SparseTensor
sérialisés.
Retours :
Attributs publics
Fonctions publiques
Sauf indication contraire, le contenu de cette page est régi par une licence Creative Commons Attribution 4.0, et les échantillons de code sont régis par une licence Apache 2.0. Pour en savoir plus, consultez les Règles du site Google Developers. Java est une marque déposée d'Oracle et/ou de ses sociétés affiliées.
Dernière mise à jour le 2025/07/27 (UTC).
[null,null,["Dernière mise à jour le 2025/07/27 (UTC)."],[],[],null,["# tensorflow::ops::DeserializeSparse Class Reference\n\ntensorflow::ops::DeserializeSparse\n==================================\n\n`#include \u003csparse_ops.h\u003e`\n\nDeserialize `SparseTensor` objects.\n\nSummary\n-------\n\nThe input `serialized_sparse` must have the shape `[?, ?, ..., ?, 3]` where the last dimension stores serialized `SparseTensor` objects and the other N dimensions (N \\\u003e= 0) correspond to a batch. The ranks of the original `SparseTensor` objects must all match. When the final `SparseTensor` is created, its rank is the rank of the incoming `SparseTensor` objects plus N; the sparse tensors have been concatenated along new dimensions, one for each batch.\n\nThe output `SparseTensor` object's shape values for the original dimensions are the max across the input `SparseTensor` objects' shape values for the corresponding dimensions. The new dimensions match the size of the batch.\n\nThe input `SparseTensor` objects' indices are assumed ordered in standard lexicographic order. If this is not the case, after this step run [SparseReorder](/versions/r2.3/api_docs/cc/class/tensorflow/ops/sparse-reorder#classtensorflow_1_1ops_1_1_sparse_reorder) to restore index ordering.\n\nFor example, if the serialized input is a `[2 x 3]` matrix representing two original `SparseTensor` objects: \n\n```text\nindex = [ 0]\n [10]\n [20]\nvalues = [1, 2, 3]\nshape = [50]\n```\n\n\u003cbr /\u003e\n\nand \n\n```text\nindex = [ 2]\n [10]\nvalues = [4, 5]\nshape = [30]\n```\n\n\u003cbr /\u003e\n\nthen the final deserialized `SparseTensor` will be: \n\n```text\nindex = [0 0]\n [0 10]\n [0 20]\n [1 2]\n [1 10]\nvalues = [1, 2, 3, 4, 5]\nshape = [2 50]\n```\n\n\u003cbr /\u003e\n\nArguments:\n\n- scope: A [Scope](/versions/r2.3/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope) object\n- serialized_sparse: The serialized `SparseTensor` objects. The last dimension must have 3 columns.\n- dtype: The `dtype` of the serialized `SparseTensor` objects.\n\n\u003cbr /\u003e\n\nReturns:\n\n- [Output](/versions/r2.3/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) sparse_indices\n- [Output](/versions/r2.3/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) sparse_values\n- [Output](/versions/r2.3/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) sparse_shape\n\n\u003cbr /\u003e\n\n| ### Constructors and Destructors ||\n|---|---|\n| [DeserializeSparse](#classtensorflow_1_1ops_1_1_deserialize_sparse_1a023794d9b956960ff8d7189e5e3feec5)`(const ::`[tensorflow::Scope](/versions/r2.3/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r2.3/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` serialized_sparse, DataType dtype)` ||\n\n| ### Public attributes ||\n|-----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|\n| [operation](#classtensorflow_1_1ops_1_1_deserialize_sparse_1abdd692db872e045ede9e84be66b35bc3) | [Operation](/versions/r2.3/api_docs/cc/class/tensorflow/operation#classtensorflow_1_1_operation) |\n| [sparse_indices](#classtensorflow_1_1ops_1_1_deserialize_sparse_1acdaf19772a1be03384f76ac4e07f6aaf) | `::`[tensorflow::Output](/versions/r2.3/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n| [sparse_shape](#classtensorflow_1_1ops_1_1_deserialize_sparse_1a86bbd4ffa415bb68db5fa2f1e76e7de5) | `::`[tensorflow::Output](/versions/r2.3/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n| [sparse_values](#classtensorflow_1_1ops_1_1_deserialize_sparse_1a303201bfe16885e2cef2b115049d005e) | `::`[tensorflow::Output](/versions/r2.3/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n\nPublic attributes\n-----------------\n\n### operation\n\n```text\nOperation operation\n``` \n\n### sparse_indices\n\n```scdoc\n::tensorflow::Output sparse_indices\n``` \n\n### sparse_shape\n\n```scdoc\n::tensorflow::Output sparse_shape\n``` \n\n### sparse_values\n\n```scdoc\n::tensorflow::Output sparse_values\n``` \n\nPublic functions\n----------------\n\n### DeserializeSparse\n\n```gdscript\n DeserializeSparse(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input serialized_sparse,\n DataType dtype\n)\n```"]]