Mantieni tutto organizzato con le raccolte
Salva e classifica i contenuti in base alle tue preferenze.
tensoreflusso:: ops:: DiagPart
#include <array_ops.h>
Restituisce la parte diagonale del tensore.
Riepilogo
Questa operazione restituisce un tensore con la parte diagonal
input
. La parte diagonal
si calcola come segue:
Supponiamo che input
abbia dimensioni [D1,..., Dk, D1,..., Dk]
, quindi l'output è un tensore di rango k
con dimensioni [D1,..., Dk]
dove:
diagonal[i1,..., ik] = input[i1, ..., ik, i1,..., ik]
.
Per esempio:
# 'input' is [[1, 0, 0, 0]
[0, 2, 0, 0]
[0, 0, 3, 0]
[0, 0, 0, 4]]
tf.diag_part(input) ==> [1, 2, 3, 4]
Argomenti:
- scope: un oggetto Scope
- input: tensore di rango k dove k è pari e non zero.
Resi:
-
Output
: la diagonale estratta.
Attributi pubblici
Funzioni pubbliche
nodo
::tensorflow::Node * node() const
operator::tensorflow::Input() const
operatore::tensorflow::Output
operator::tensorflow::Output() const
Salvo quando diversamente specificato, i contenuti di questa pagina sono concessi in base alla licenza Creative Commons Attribution 4.0, mentre gli esempi di codice sono concessi in base alla licenza Apache 2.0. Per ulteriori dettagli, consulta le norme del sito di Google Developers. Java è un marchio registrato di Oracle e/o delle sue consociate.
Ultimo aggiornamento 2025-07-27 UTC.
[null,null,["Ultimo aggiornamento 2025-07-27 UTC."],[],[],null,["# tensorflow::ops::DiagPart Class Reference\n\ntensorflow::ops::DiagPart\n=========================\n\n`#include \u003carray_ops.h\u003e`\n\nReturns the diagonal part of the tensor.\n\nSummary\n-------\n\nThis operation returns a tensor with the `diagonal` part of the `input`. The `diagonal` part is computed as follows:\n\nAssume `input` has dimensions `[D1,..., Dk, D1,..., Dk]`, then the output is a tensor of rank `k` with dimensions `[D1,..., Dk]` where:\n\n`diagonal[i1,..., ik] = input[i1, ..., ik, i1,..., ik]`.\n\nFor example:\n\n\n```text\n# 'input' is [[1, 0, 0, 0]\n [0, 2, 0, 0]\n [0, 0, 3, 0]\n [0, 0, 0, 4]]\n```\n\n\u003cbr /\u003e\n\n\n```scdoc\ntf.diag_part(input) ==\u003e [1, 2, 3, 4]\n```\n\n\u003cbr /\u003e\n\nArguments:\n\n- scope: A [Scope](/versions/r2.3/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope) object\n- input: Rank k tensor where k is even and not zero.\n\n\u003cbr /\u003e\n\nReturns:\n\n- [Output](/versions/r2.3/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output): The extracted diagonal.\n\n\u003cbr /\u003e\n\n| ### Constructors and Destructors ||\n|---|---|\n| [DiagPart](#classtensorflow_1_1ops_1_1_diag_part_1a722e0fbf9139d42128d88361fcceffbb)`(const ::`[tensorflow::Scope](/versions/r2.3/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r2.3/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` input)` ||\n\n| ### Public attributes ||\n|---------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|\n| [diagonal](#classtensorflow_1_1ops_1_1_diag_part_1a5c2700969d74c5dcd441f482f69f0575) | `::`[tensorflow::Output](/versions/r2.3/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n| [operation](#classtensorflow_1_1ops_1_1_diag_part_1a4a4d8b4387110108a77726a4e37f75ef) | [Operation](/versions/r2.3/api_docs/cc/class/tensorflow/operation#classtensorflow_1_1_operation) |\n\n| ### Public functions ||\n|---------------------------------------------------------------------------------------------------------------------|------------------------|\n| [node](#classtensorflow_1_1ops_1_1_diag_part_1a7f5dfaa792daf4eebe39b740aaa5a117)`() const ` | `::tensorflow::Node *` |\n| [operator::tensorflow::Input](#classtensorflow_1_1ops_1_1_diag_part_1aef16d4b10102516c099741c0935952e9)`() const ` | ` ` ` ` |\n| [operator::tensorflow::Output](#classtensorflow_1_1ops_1_1_diag_part_1a3ffd8291e65d1b66c89fbcc0bb34225e)`() const ` | ` ` ` ` |\n\nPublic attributes\n-----------------\n\n### diagonal\n\n```text\n::tensorflow::Output diagonal\n``` \n\n### operation\n\n```text\nOperation operation\n``` \n\nPublic functions\n----------------\n\n### DiagPart\n\n```gdscript\n DiagPart(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input input\n)\n``` \n\n### node\n\n```gdscript\n::tensorflow::Node * node() const \n``` \n\n### operator::tensorflow::Input\n\n```gdscript\n operator::tensorflow::Input() const \n``` \n\n### operator::tensorflow::Output\n\n```gdscript\n operator::tensorflow::Output() const \n```"]]