تدفق التوتر:: العمليات:: SparseConcat
#include <sparse_ops.h>
يسلسل قائمة SparseTensor
على طول البعد المحدد.
ملخص
التسلسل يتعلق بالإصدارات الكثيفة من هذه الموترات المتناثرة. من المفترض أن كل إدخال هو SparseTensor
الذي يتم ترتيب عناصره حسب عدد الأبعاد المتزايد.
يجب أن تتطابق جميع أشكال المدخلات، باستثناء البعد المتسلسل. يجب أن يكون لقوائم indices
values
shapes
نفس الطول.
شكل المخرجات مطابق للمدخلات، باستثناء طول البعد المتسلسل، حيث يكون مجموع أحجام المدخلات على طول هذا البعد.
سيتم اللجوء إلى عناصر الإخراج للحفاظ على ترتيب الفرز مع زيادة عدد الأبعاد.
يتم تشغيل هذه العملية في وقت O(M log M)
، حيث M
هو العدد الإجمالي للقيم غير الفارغة عبر جميع المدخلات. ويرجع ذلك إلى الحاجة إلى فرز داخلي من أجل التسلسل بكفاءة عبر بُعد عشوائي.
على سبيل المثال، إذا كان concat_dim = 1
وكانت المدخلات
sp_inputs[0]: shape = [2, 3]
[0, 2]: "a"
[1, 0]: "b"
[1, 1]: "c"
sp_inputs[1]: shape = [2, 4]
[0, 1]: "d"
[0, 2]: "e"
ثم سيكون الإخراج
shape = [2, 7]
[0, 2]: "a"
[0, 4]: "d"
[0, 5]: "e"
[1, 0]: "b"
[1, 1]: "c"
بيانيا هذا يعادل القيام
[ a] concat [ d e ] = [ a d e ]
[b c ] [ ] [b c ]
الحجج:
- النطاق: كائن النطاق
- المؤشرات: 2-د. مؤشرات كل مدخلات
SparseTensor
. - القيم: 1-د. القيم غير الفارغة لكل
SparseTensor
. - الأشكال: 1-د. أشكال كل
SparseTensor
. - concat_dim: البعد المراد تسلسله. يجب أن يكون في النطاق [-rank, rank)، حيث rank هو عدد الأبعاد في كل إدخال
SparseTensor
.
العوائد:
-
Output
الإخراج: 2-D. مؤشرات SparseTensor
المتسلسلة. - قيم إخراج
Output
: 1-D. القيم غير الفارغة لـ SparseTensor
المتسلسلة. - شكل
Output
: 1-D. شكل SparseTensor
المتسلسل.
الصفات العامة
عملية
Operation operation
input_indices
::tensorflow::Output output_indices
input_shape
::tensorflow::Output output_shape
input_values
::tensorflow::Output output_values
الوظائف العامة
إنّ محتوى هذه الصفحة مرخّص بموجب ترخيص Creative Commons Attribution 4.0 ما لم يُنصّ على خلاف ذلك، ونماذج الرموز مرخّصة بموجب ترخيص Apache 2.0. للاطّلاع على التفاصيل، يُرجى مراجعة سياسات موقع Google Developers. إنّ Java هي علامة تجارية مسجَّلة لشركة Oracle و/أو شركائها التابعين.
تاريخ التعديل الأخير: 2025-07-27 (حسب التوقيت العالمي المتفَّق عليه)
[null,null,["تاريخ التعديل الأخير: 2025-07-27 (حسب التوقيت العالمي المتفَّق عليه)"],[],[],null,["# tensorflow::ops::SparseConcat Class Reference\n\ntensorflow::ops::SparseConcat\n=============================\n\n`#include \u003csparse_ops.h\u003e`\n\nConcatenates a list of `SparseTensor` along the specified dimension.\n\nSummary\n-------\n\nConcatenation is with respect to the dense versions of these sparse tensors. It is assumed that each input is a `SparseTensor` whose elements are ordered along increasing dimension number.\n\n[All](/versions/r2.3/api_docs/cc/class/tensorflow/ops/all#classtensorflow_1_1ops_1_1_all) inputs' shapes must match, except for the concat dimension. The `indices`, `values`, and `shapes` lists must have the same length.\n\nThe output shape is identical to the inputs', except along the concat dimension, where it is the sum of the inputs' sizes along that dimension.\n\nThe output elements will be resorted to preserve the sort order along increasing dimension number.\n\nThis op runs in `O(M log M)` time, where `M` is the total number of non-empty values across all inputs. This is due to the need for an internal sort in order to concatenate efficiently across an arbitrary dimension.\n\nFor example, if `concat_dim = 1` and the inputs are \n\n```scdoc\nsp_inputs[0]: shape = [2, 3]\n[0, 2]: \"a\"\n[1, 0]: \"b\"\n[1, 1]: \"c\"\n\nsp_inputs[1]: shape = [2, 4]\n[0, 1]: \"d\"\n[0, 2]: \"e\"\n```\n\n\u003cbr /\u003e\n\nthen the output will be \n\n```text\nshape = [2, 7]\n[0, 2]: \"a\"\n[0, 4]: \"d\"\n[0, 5]: \"e\"\n[1, 0]: \"b\"\n[1, 1]: \"c\"\n```\n\n\u003cbr /\u003e\n\nGraphically this is equivalent to doing \n\n```ini\n[ a] concat [ d e ] = [ a d e ]\n[b c ] [ ] [b c ]\n```\n\n\u003cbr /\u003e\n\nArguments:\n\n- scope: A [Scope](/versions/r2.3/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope) object\n- indices: 2-D. Indices of each input `SparseTensor`.\n- values: 1-D. Non-empty values of each `SparseTensor`.\n- shapes: 1-D. Shapes of each `SparseTensor`.\n- concat_dim: Dimension to concatenate along. Must be in range \\[-rank, rank), where rank is the number of dimensions in each input `SparseTensor`.\n\n\u003cbr /\u003e\n\nReturns:\n\n- [Output](/versions/r2.3/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) output_indices: 2-D. Indices of the concatenated `SparseTensor`.\n- [Output](/versions/r2.3/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) output_values: 1-D. Non-empty values of the concatenated `SparseTensor`.\n- [Output](/versions/r2.3/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) output_shape: 1-D. Shape of the concatenated `SparseTensor`.\n\n\u003cbr /\u003e\n\n| ### Constructors and Destructors ||\n|---|---|\n| [SparseConcat](#classtensorflow_1_1ops_1_1_sparse_concat_1a50aa275ec5a88496fd4e99f0f1003616)`(const ::`[tensorflow::Scope](/versions/r2.3/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::InputList](/versions/r2.3/api_docs/cc/class/tensorflow/input-list#classtensorflow_1_1_input_list)` indices, ::`[tensorflow::InputList](/versions/r2.3/api_docs/cc/class/tensorflow/input-list#classtensorflow_1_1_input_list)` values, ::`[tensorflow::InputList](/versions/r2.3/api_docs/cc/class/tensorflow/input-list#classtensorflow_1_1_input_list)` shapes, int64 concat_dim)` ||\n\n| ### Public attributes ||\n|------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|\n| [operation](#classtensorflow_1_1ops_1_1_sparse_concat_1a8db5a398751bcf0e460c5032ae1ab292) | [Operation](/versions/r2.3/api_docs/cc/class/tensorflow/operation#classtensorflow_1_1_operation) |\n| [output_indices](#classtensorflow_1_1ops_1_1_sparse_concat_1a79b9cef174b8488e90f52907d6d64a0f) | `::`[tensorflow::Output](/versions/r2.3/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n| [output_shape](#classtensorflow_1_1ops_1_1_sparse_concat_1ae3130991367ac10382b9a6a310b1eff5) | `::`[tensorflow::Output](/versions/r2.3/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n| [output_values](#classtensorflow_1_1ops_1_1_sparse_concat_1a626bd96bc86fb8ecddbd8cbb7a6828cf) | `::`[tensorflow::Output](/versions/r2.3/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n\nPublic attributes\n-----------------\n\n### operation\n\n```text\nOperation operation\n``` \n\n### output_indices\n\n```scdoc\n::tensorflow::Output output_indices\n``` \n\n### output_shape\n\n```scdoc\n::tensorflow::Output output_shape\n``` \n\n### output_values\n\n```scdoc\n::tensorflow::Output output_values\n``` \n\nPublic functions\n----------------\n\n### SparseConcat\n\n```gdscript\n SparseConcat(\n const ::tensorflow::Scope & scope,\n ::tensorflow::InputList indices,\n ::tensorflow::InputList values,\n ::tensorflow::InputList shapes,\n int64 concat_dim\n)\n```"]]