Mantieni tutto organizzato con le raccolte
Salva e classifica i contenuti in base alle tue preferenze.
tensoreflusso:: ops:: Somma segmenti sparsi
#include <math_ops.h>
Calcola la somma lungo segmenti sparsi di un tensore.
Riepilogo
Leggi la sezione sulla segmentazione per una spiegazione dei segmenti.
Come SegmentSum
, ma segment_ids
può avere un rango inferiore alla prima dimensione data
, selezionando un sottoinsieme della dimensione 0, specificato da indices
.
Per esempio:
c = tf.constant([[1,2,3,4], [-1,-2,-3,-4], [5,6,7,8]])
# Select two rows, one segment.
tf.sparse_segment_sum(c, tf.constant([0, 1]), tf.constant([0, 0]))
# => [[0 0 0 0]]
# Select two rows, two segment.
tf.sparse_segment_sum(c, tf.constant([0, 1]), tf.constant([0, 1]))
# => [[ 1 2 3 4]
# [-1 -2 -3 -4]]
# Select all rows, two segments.
tf.sparse_segment_sum(c, tf.constant([0, 1, 2]), tf.constant([0, 0, 1]))
# => [[0 0 0 0]
# [5 6 7 8]]
# Which is equivalent to:
tf.segment_sum(c, tf.constant([0, 0, 1]))
Argomenti:
- scope: un oggetto Scope
- indici: un tensore 1-D. Ha lo stesso rango di
segment_ids
. - segment_ids: un tensore 1-D. I valori devono essere ordinati e possono essere ripetuti.
Resi:
-
Output
: ha la stessa forma dei dati, ad eccezione della dimensione 0 che ha dimensione k
, il numero di segmenti.
Attributi pubblici
Funzioni pubbliche
nodo
::tensorflow::Node * node() const
operator::tensorflow::Input() const
operatore::tensorflow::Output
operator::tensorflow::Output() const
Salvo quando diversamente specificato, i contenuti di questa pagina sono concessi in base alla licenza Creative Commons Attribution 4.0, mentre gli esempi di codice sono concessi in base alla licenza Apache 2.0. Per ulteriori dettagli, consulta le norme del sito di Google Developers. Java è un marchio registrato di Oracle e/o delle sue consociate.
Ultimo aggiornamento 2025-07-27 UTC.
[null,null,["Ultimo aggiornamento 2025-07-27 UTC."],[],[],null,["# tensorflow::ops::SparseSegmentSum Class Reference\n\ntensorflow::ops::SparseSegmentSum\n=================================\n\n`#include \u003cmath_ops.h\u003e`\n\nComputes the sum along sparse segments of a tensor.\n\nSummary\n-------\n\nRead [the section on segmentation](https://tensorflow.org/api_docs/python/tf/math#Segmentation) for an explanation of segments.\n\nLike [SegmentSum](/versions/r2.3/api_docs/cc/class/tensorflow/ops/segment-sum#classtensorflow_1_1ops_1_1_segment_sum), but `segment_ids` can have rank less than `data`'s first dimension, selecting a subset of dimension 0, specified by `indices`.\n\nFor example:\n\n\n```gdscript\nc = tf.constant([[1,2,3,4], [-1,-2,-3,-4], [5,6,7,8]])\n```\n\n\u003cbr /\u003e\n\n\n```gdscript\n# Select two rows, one segment.\ntf.sparse_segment_sum(c, tf.constant([0, 1]), tf.constant([0, 0]))\n# =\u003e [[0 0 0 0]]\n```\n\n\u003cbr /\u003e\n\n\n```gdscript\n# Select two rows, two segment.\ntf.sparse_segment_sum(c, tf.constant([0, 1]), tf.constant([0, 1]))\n# =\u003e [[ 1 2 3 4]\n# [-1 -2 -3 -4]]\n```\n\n\u003cbr /\u003e\n\n\n```gdscript\n# Select all rows, two segments.\ntf.sparse_segment_sum(c, tf.constant([0, 1, 2]), tf.constant([0, 0, 1]))\n# =\u003e [[0 0 0 0]\n# [5 6 7 8]]\n```\n\n\u003cbr /\u003e\n\n\n```gdscript\n# Which is equivalent to:\ntf.segment_sum(c, tf.constant([0, 0, 1]))\n```\n\n\u003cbr /\u003e\n\nArguments:\n\n- scope: A [Scope](/versions/r2.3/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope) object\n- indices: A 1-D tensor. Has same rank as `segment_ids`.\n- segment_ids: A 1-D tensor. Values should be sorted and can be repeated.\n\n\u003cbr /\u003e\n\nReturns:\n\n- [Output](/versions/r2.3/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output): Has same shape as data, except for dimension 0 which has size `k`, the number of segments.\n\n\u003cbr /\u003e\n\n| ### Constructors and Destructors ||\n|---|---|\n| [SparseSegmentSum](#classtensorflow_1_1ops_1_1_sparse_segment_sum_1a02259862f31344aafc95082e08aa9aab)`(const ::`[tensorflow::Scope](/versions/r2.3/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r2.3/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` data, ::`[tensorflow::Input](/versions/r2.3/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` indices, ::`[tensorflow::Input](/versions/r2.3/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` segment_ids)` ||\n\n| ### Public attributes ||\n|------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|\n| [operation](#classtensorflow_1_1ops_1_1_sparse_segment_sum_1ad649884f20027c1aad55e81c08e7957b) | [Operation](/versions/r2.3/api_docs/cc/class/tensorflow/operation#classtensorflow_1_1_operation) |\n| [output](#classtensorflow_1_1ops_1_1_sparse_segment_sum_1a40540c212fd500b0d52073ad1fc9d0c8) | `::`[tensorflow::Output](/versions/r2.3/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n\n| ### Public functions ||\n|------------------------------------------------------------------------------------------------------------------------------|------------------------|\n| [node](#classtensorflow_1_1ops_1_1_sparse_segment_sum_1a51e3e189f4da0718eca9673f4245f2b2)`() const ` | `::tensorflow::Node *` |\n| [operator::tensorflow::Input](#classtensorflow_1_1ops_1_1_sparse_segment_sum_1a61710c54c59674e886a27a1025c266ba)`() const ` | ` ` ` ` |\n| [operator::tensorflow::Output](#classtensorflow_1_1ops_1_1_sparse_segment_sum_1ad6961f104657b05da798100d4ac7f68b)`() const ` | ` ` ` ` |\n\nPublic attributes\n-----------------\n\n### operation\n\n```text\nOperation operation\n``` \n\n### output\n\n```text\n::tensorflow::Output output\n``` \n\nPublic functions\n----------------\n\n### SparseSegmentSum\n\n```gdscript\n SparseSegmentSum(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input data,\n ::tensorflow::Input indices,\n ::tensorflow::Input segment_ids\n)\n``` \n\n### node\n\n```gdscript\n::tensorflow::Node * node() const \n``` \n\n### operator::tensorflow::Input\n\n```gdscript\n operator::tensorflow::Input() const \n``` \n\n### operator::tensorflow::Output\n\n```gdscript\n operator::tensorflow::Output() const \n```"]]