Mantieni tutto organizzato con le raccolte
Salva e classifica i contenuti in base alle tue preferenze.
tensoreflusso:: ops:: SparseSoftmaxCrossEntropyWithLogits
#include <nn_ops.h>
Calcola il costo dell'entropia incrociata softmax e i gradienti per la propagazione all'indietro.
Riepilogo
A differenza di SoftmaxCrossEntropyWithLogits
, questa operazione non accetta una matrice di probabilità di etichette, ma piuttosto una singola etichetta per riga di caratteristiche. Si ritiene che questa etichetta abbia probabilità 1,0 per la riga specificata.
Gli input sono i logit, non le probabilità.
Argomenti:
- scope: un oggetto Scope
- caratteristiche: matrice batch_size x num_classes
- etichette: vettore batch_size con valori in [0, num_classes). Questa è l'etichetta per la voce minibatch specificata.
Resi:
- Perdita
Output
: perdita per esempio (vettore batch_size). - Backprop
Output
: gradienti propagati all'indietro (matrice batch_size x num_classes).
Attributi pubblici
Funzioni pubbliche
Salvo quando diversamente specificato, i contenuti di questa pagina sono concessi in base alla licenza Creative Commons Attribution 4.0, mentre gli esempi di codice sono concessi in base alla licenza Apache 2.0. Per ulteriori dettagli, consulta le norme del sito di Google Developers. Java è un marchio registrato di Oracle e/o delle sue consociate.
Ultimo aggiornamento 2025-07-27 UTC.
[null,null,["Ultimo aggiornamento 2025-07-27 UTC."],[],[],null,["# tensorflow::ops::SparseSoftmaxCrossEntropyWithLogits Class Reference\n\ntensorflow::ops::SparseSoftmaxCrossEntropyWithLogits\n====================================================\n\n`#include \u003cnn_ops.h\u003e`\n\nComputes softmax cross entropy cost and gradients to backpropagate.\n\nSummary\n-------\n\nUnlike [SoftmaxCrossEntropyWithLogits](/versions/r2.3/api_docs/cc/class/tensorflow/ops/softmax-cross-entropy-with-logits#classtensorflow_1_1ops_1_1_softmax_cross_entropy_with_logits), this operation does not accept a matrix of label probabilities, but rather a single label per row of features. This label is considered to have probability 1.0 for the given row.\n\nInputs are the logits, not probabilities.\n\nArguments:\n\n- scope: A [Scope](/versions/r2.3/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope) object\n- features: batch_size x num_classes matrix\n- labels: batch_size vector with values in \\[0, num_classes). This is the label for the given minibatch entry.\n\n\u003cbr /\u003e\n\nReturns:\n\n- [Output](/versions/r2.3/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) loss: Per example loss (batch_size vector).\n- [Output](/versions/r2.3/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) backprop: backpropagated gradients (batch_size x num_classes matrix).\n\n\u003cbr /\u003e\n\n| ### Constructors and Destructors ||\n|---|---|\n| [SparseSoftmaxCrossEntropyWithLogits](#classtensorflow_1_1ops_1_1_sparse_softmax_cross_entropy_with_logits_1a965e868e103e3908d2bfb1dcd368e90d)`(const ::`[tensorflow::Scope](/versions/r2.3/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r2.3/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` features, ::`[tensorflow::Input](/versions/r2.3/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` labels)` ||\n\n| ### Public attributes ||\n|----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|\n| [backprop](#classtensorflow_1_1ops_1_1_sparse_softmax_cross_entropy_with_logits_1a9e77b4f5efe0d0762f8fc95a3f7cdbaa) | `::`[tensorflow::Output](/versions/r2.3/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n| [loss](#classtensorflow_1_1ops_1_1_sparse_softmax_cross_entropy_with_logits_1aa3c9d1b704d919039c2cd2686fbea683) | `::`[tensorflow::Output](/versions/r2.3/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n| [operation](#classtensorflow_1_1ops_1_1_sparse_softmax_cross_entropy_with_logits_1ac581285ea4e5d57f85d8f317aed838fa) | [Operation](/versions/r2.3/api_docs/cc/class/tensorflow/operation#classtensorflow_1_1_operation) |\n\nPublic attributes\n-----------------\n\n### backprop\n\n```text\n::tensorflow::Output backprop\n``` \n\n### loss\n\n```text\n::tensorflow::Output loss\n``` \n\n### operation\n\n```text\nOperation operation\n``` \n\nPublic functions\n----------------\n\n### SparseSoftmaxCrossEntropyWithLogits\n\n```gdscript\n SparseSoftmaxCrossEntropyWithLogits(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input features,\n ::tensorflow::Input labels\n)\n```"]]