Tetap teratur dengan koleksi
Simpan dan kategorikan konten berdasarkan preferensi Anda.
aliran tensor:: operasi:: Dilatasi2D
#include <nn_ops.h>
Menghitung dilatasi skala abu-abu dari input
4-D dan tensor filter
3-D.
Ringkasan
Tensor input
berbentuk [batch, in_height, in_width, depth]
dan tensor filter
berbentuk [filter_height, filter_width, depth]
, yaitu, setiap saluran masukan diproses secara independen satu sama lain dengan fungsi penataannya sendiri. Tensor output
memiliki bentuk [batch, out_height, out_width, depth]
. Dimensi spasial tensor keluaran bergantung pada algoritma padding
. Saat ini kami hanya mendukung data_format
"NHWC" default.
Secara rinci, dilatasi 2-D morfologi skala abu-abu adalah korelasi jumlah maksimal (untuk konsistensi dengan conv2d
, kami menggunakan filter yang tidak dicerminkan):
output[b, y, x, c] =
max_{dy, dx} input[b,
strides[1] * y + rates[1] * dy,
strides[2] * x + rates[2] * dx,
c] +
filter[dy, dx, c]
Max-pooling adalah kasus khusus ketika filter memiliki ukuran yang sama dengan ukuran kernel pooling dan berisi semua angka nol.
Catatan tentang dualitas: Pelebaran input
oleh filter
sama dengan negasi erosi -input
oleh filter
yang dipantulkan.
Argumen:
- ruang lingkup: Objek Lingkup
- masukan: 4-D dengan bentuk
[batch, in_height, in_width, depth]
. - filter: 3-D dengan bentuk
[filter_height, filter_width, depth]
. - langkah: Langkah jendela geser untuk setiap dimensi tensor masukan. Harus:
[1, stride_height, stride_width, 1]
. - rate: Langkah masukan untuk dilatasi morfologi yang atrous. Harus:
[1, rate_height, rate_width, 1]
. - padding: Jenis algoritma padding yang akan digunakan.
Pengembalian:
-
Output
: 4-D dengan bentuk [batch, out_height, out_width, depth]
.
Atribut publik
Fungsi publik
simpul
::tensorflow::Node * node() const
operator::tensorflow::Input() const
operator::tensorflow::Keluaran
operator::tensorflow::Output() const
Kecuali dinyatakan lain, konten di halaman ini dilisensikan berdasarkan Lisensi Creative Commons Attribution 4.0, sedangkan contoh kode dilisensikan berdasarkan Lisensi Apache 2.0. Untuk mengetahui informasi selengkapnya, lihat Kebijakan Situs Google Developers. Java adalah merek dagang terdaftar dari Oracle dan/atau afiliasinya.
Terakhir diperbarui pada 2025-07-26 UTC.
[null,null,["Terakhir diperbarui pada 2025-07-26 UTC."],[],[],null,["# tensorflow::ops::Dilation2D Class Reference\n\ntensorflow::ops::Dilation2D\n===========================\n\n`#include \u003cnn_ops.h\u003e`\n\nComputes the grayscale dilation of 4-D `input` and 3-D `filter` tensors.\n\nSummary\n-------\n\nThe `input` tensor has shape `[batch, in_height, in_width, depth]` and the `filter` tensor has shape `[filter_height, filter_width, depth]`, i.e., each input channel is processed independently of the others with its own structuring function. The `output` tensor has shape `[batch, out_height, out_width, depth]`. The spatial dimensions of the output tensor depend on the `padding` algorithm. We currently only support the default \"NHWC\" `data_format`.\n\nIn detail, the grayscale morphological 2-D dilation is the max-sum correlation (for consistency with `conv2d`, we use unmirrored filters): \n\n```scdoc\noutput[b, y, x, c] =\n max_{dy, dx} input[b,\n strides[1] * y + rates[1] * dy,\n strides[2] * x + rates[2] * dx,\n c] +\n filter[dy, dx, c]\n```\n\n\u003cbr /\u003e\n\nMax-pooling is a special case when the filter has size equal to the pooling kernel size and contains all zeros.\n\nNote on duality: The dilation of `input` by the `filter` is equal to the negation of the erosion of `-input` by the reflected `filter`.\n\nArguments:\n\n- scope: A [Scope](/versions/r1.15/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope) object\n- input: 4-D with shape `[batch, in_height, in_width, depth]`.\n- filter: 3-D with shape `[filter_height, filter_width, depth]`.\n- strides: The stride of the sliding window for each dimension of the input tensor. Must be: `[1, stride_height, stride_width, 1]`.\n- rates: The input stride for atrous morphological dilation. Must be: `[1, rate_height, rate_width, 1]`.\n- padding: The type of padding algorithm to use.\n\n\u003cbr /\u003e\n\nReturns:\n\n- [Output](/versions/r1.15/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output): 4-D with shape `[batch, out_height, out_width, depth]`.\n\n\u003cbr /\u003e\n\n| ### Constructors and Destructors ||\n|---|---|\n| [Dilation2D](#classtensorflow_1_1ops_1_1_dilation2_d_1aa7fba6ab148288fc230175c265483ff3)`(const ::`[tensorflow::Scope](/versions/r1.15/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` input, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` filter, const gtl::ArraySlice\u003c int \u003e & strides, const gtl::ArraySlice\u003c int \u003e & rates, StringPiece padding)` ||\n\n| ### Public attributes ||\n|-----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|\n| [operation](#classtensorflow_1_1ops_1_1_dilation2_d_1a50e0232a57e1ec03bc56803f2e2ae58e) | [Operation](/versions/r1.15/api_docs/cc/class/tensorflow/operation#classtensorflow_1_1_operation) |\n| [output](#classtensorflow_1_1ops_1_1_dilation2_d_1ae68b7f48c9fc91ffdef4e18bd34625f0) | `::`[tensorflow::Output](/versions/r1.15/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n\n| ### Public functions ||\n|-----------------------------------------------------------------------------------------------------------------------|------------------------|\n| [node](#classtensorflow_1_1ops_1_1_dilation2_d_1a965eb807b87a9ac84ef8533e6da72768)`() const ` | `::tensorflow::Node *` |\n| [operator::tensorflow::Input](#classtensorflow_1_1ops_1_1_dilation2_d_1ae1a45a55c3092ef319c027a697e3e667)`() const ` | ` ` ` ` |\n| [operator::tensorflow::Output](#classtensorflow_1_1ops_1_1_dilation2_d_1a451d294669723935c6618946259273c3)`() const ` | ` ` ` ` |\n\nPublic attributes\n-----------------\n\n### operation\n\n```text\nOperation operation\n``` \n\n### output\n\n```text\n::tensorflow::Output output\n``` \n\nPublic functions\n----------------\n\n### Dilation2D\n\n```gdscript\n Dilation2D(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input input,\n ::tensorflow::Input filter,\n const gtl::ArraySlice\u003c int \u003e & strides,\n const gtl::ArraySlice\u003c int \u003e & rates,\n StringPiece padding\n)\n``` \n\n### node\n\n```gdscript\n::tensorflow::Node * node() const \n``` \n\n### operator::tensorflow::Input\n\n```gdscript\n operator::tensorflow::Input() const \n``` \n\n### operator::tensorflow::Output\n\n```gdscript\n operator::tensorflow::Output() const \n```"]]