Tetap teratur dengan koleksi
Simpan dan kategorikan konten berdasarkan preferensi Anda.
aliran tensor:: operasi:: Perluas Redup
#include <array_ops.h>
Menyisipkan dimensi 1 ke dalam bentuk tensor.
Ringkasan
Dengan adanya input
tensor, operasi ini menyisipkan dimensi 1 pada axis
indeks dimensi bentuk input
. axis
indeks dimensi dimulai dari nol; jika Anda menentukan angka negatif untuk axis
angka tersebut dihitung mundur dari akhir.
Operasi ini berguna jika Anda ingin menambahkan dimensi batch ke satu elemen. Misalnya, jika Anda memiliki satu gambar berbentuk [height, width, channels]
, Anda dapat menjadikannya kumpulan 1 gambar dengan expand_dims(image, 0)
, yang akan membuat bentuk [1, height, width, channels]
.
Contoh lain:
# 't' is a tensor of shape [2]
shape(expand_dims(t, 0)) ==> [1, 2]
shape(expand_dims(t, 1)) ==> [2, 1]
shape(expand_dims(t, -1)) ==> [2, 1]
# 't2' is a tensor of shape [2, 3, 5]
shape(expand_dims(t2, 0)) ==> [1, 2, 3, 5]
shape(expand_dims(t2, 2)) ==> [2, 3, 1, 5]
shape(expand_dims(t2, 3)) ==> [2, 3, 5, 1]
Operasi ini memerlukan:
-1-input.dims() <= dim <= input.dims()
Operasi ini terkait dengan squeeze()
, yang menghilangkan dimensi ukuran 1.
Argumen:
- ruang lingkup: Objek Lingkup
- sumbu: 0-D (skalar). Menentukan indeks dimensi untuk memperluas bentuk
input
. Harus berada dalam rentang [-rank(input) - 1, rank(input)]
.
Pengembalian:
-
Output
: Berisi data yang sama dengan input
, namun bentuknya ditambah dimensi tambahan sebesar 1.
Atribut publik
Fungsi publik
simpul
::tensorflow::Node * node() const
operator::tensorflow::Input() const
operator::tensorflow::Keluaran
operator::tensorflow::Output() const
Kecuali dinyatakan lain, konten di halaman ini dilisensikan berdasarkan Lisensi Creative Commons Attribution 4.0, sedangkan contoh kode dilisensikan berdasarkan Lisensi Apache 2.0. Untuk mengetahui informasi selengkapnya, lihat Kebijakan Situs Google Developers. Java adalah merek dagang terdaftar dari Oracle dan/atau afiliasinya.
Terakhir diperbarui pada 2025-07-26 UTC.
[null,null,["Terakhir diperbarui pada 2025-07-26 UTC."],[],[],null,["# tensorflow::ops::ExpandDims Class Reference\n\ntensorflow::ops::ExpandDims\n===========================\n\n`#include \u003carray_ops.h\u003e`\n\nInserts a dimension of 1 into a tensor's shape.\n\nSummary\n-------\n\nGiven a tensor `input`, this operation inserts a dimension of 1 at the dimension index `axis` of `input`'s shape. The dimension index `axis` starts at zero; if you specify a negative number for `axis` it is counted backward from the end.\n\nThis operation is useful if you want to add a batch dimension to a single element. For example, if you have a single image of shape `[height, width, channels]`, you can make it a batch of 1 image with `expand_dims(image, 0)`, which will make the shape `[1, height, width, channels]`.\n\nOther examples:\n\n\n```scdoc\n# 't' is a tensor of shape [2]\nshape(expand_dims(t, 0)) ==\u003e [1, 2]\nshape(expand_dims(t, 1)) ==\u003e [2, 1]\nshape(expand_dims(t, -1)) ==\u003e [2, 1]\n```\n\n\u003cbr /\u003e\n\n\n```scdoc\n# 't2' is a tensor of shape [2, 3, 5]\nshape(expand_dims(t2, 0)) ==\u003e [1, 2, 3, 5]\nshape(expand_dims(t2, 2)) ==\u003e [2, 3, 1, 5]\nshape(expand_dims(t2, 3)) ==\u003e [2, 3, 5, 1]\n```\n\n\u003cbr /\u003e\n\nThis operation requires that:\n\n\n`-1-input.dims() \u003c= dim \u003c= input.dims()`\n\nThis operation is related to `squeeze()`, which removes dimensions of size 1.\n\nArguments:\n\n- scope: A [Scope](/versions/r1.15/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope) object\n- axis: 0-D (scalar). Specifies the dimension index at which to expand the shape of `input`. Must be in the range `[-rank(input) - 1, rank(input)]`.\n\n\u003cbr /\u003e\n\nReturns:\n\n- [Output](/versions/r1.15/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output): Contains the same data as `input`, but its shape has an additional dimension of size 1 added.\n\n\u003cbr /\u003e\n\n| ### Constructors and Destructors ||\n|---|---|\n| [ExpandDims](#classtensorflow_1_1ops_1_1_expand_dims_1ae2cff3dc910140a50446ed380848baef)`(const ::`[tensorflow::Scope](/versions/r1.15/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` input, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` axis)` ||\n\n| ### Public attributes ||\n|-----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|\n| [operation](#classtensorflow_1_1ops_1_1_expand_dims_1aefcdcc72ed92eb8f0975a90ca998bb71) | [Operation](/versions/r1.15/api_docs/cc/class/tensorflow/operation#classtensorflow_1_1_operation) |\n| [output](#classtensorflow_1_1ops_1_1_expand_dims_1abc828c5e90fdd61142ffd01878f9f95a) | `::`[tensorflow::Output](/versions/r1.15/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n\n| ### Public functions ||\n|-----------------------------------------------------------------------------------------------------------------------|------------------------|\n| [node](#classtensorflow_1_1ops_1_1_expand_dims_1a85ce8553584a8b3a50345d93f0f03b52)`() const ` | `::tensorflow::Node *` |\n| [operator::tensorflow::Input](#classtensorflow_1_1ops_1_1_expand_dims_1aabc0c1aba83330412277a5b6e6f2c04e)`() const ` | ` ` ` ` |\n| [operator::tensorflow::Output](#classtensorflow_1_1ops_1_1_expand_dims_1a280db99846027451637ac5d7e7a9d67e)`() const ` | ` ` ` ` |\n\nPublic attributes\n-----------------\n\n### operation\n\n```text\nOperation operation\n``` \n\n### output\n\n```text\n::tensorflow::Output output\n``` \n\nPublic functions\n----------------\n\n### ExpandDims\n\n```gdscript\n ExpandDims(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input input,\n ::tensorflow::Input axis\n)\n``` \n\n### node\n\n```gdscript\n::tensorflow::Node * node() const \n``` \n\n### operator::tensorflow::Input\n\n```gdscript\n operator::tensorflow::Input() const \n``` \n\n### operator::tensorflow::Output\n\n```gdscript\n operator::tensorflow::Output() const \n```"]]