Tetap teratur dengan koleksi
Simpan dan kategorikan konten berdasarkan preferensi Anda.
aliran tensor:: operasi:: DiTopKV2
#include <nn_ops.h>
Mengatakan apakah target berada dalam prediksi K
teratas.
Ringkasan
Ini menghasilkan array bool batch_size
, entri out[i]
true
jika prediksi untuk kelas target termasuk di antara k
prediksi teratas di antara semua prediksi misalnya i
. Perhatikan bahwa perilaku InTopK
berbeda dengan operasi TopK
dalam menangani ikatan; jika beberapa kelas memiliki nilai prediksi yang sama dan mengangkangi batas k
teratas, semua kelas tersebut dianggap berada di k
teratas.
Lebih formalnya, biarlah
\(predictions_i\) jadilah prediksi untuk semua kelas misalnya i
, \(targets_i\) jadilah kelas sasaran misalnya i
, \(out_i\) jadilah output misalnya i
,
$$out_i = predictions_{i, targets_i} TopKIncludingTies(predictions_i)$$
Argumen:
- ruang lingkup: Objek Lingkup
- prediksi: Tensor
classes
batch_size
x. - target: Vektor
batch_size
dari id kelas. - k : Jumlah elemen teratas yang harus diperhatikan untuk presisi komputasi.
Pengembalian:
Atribut publik
Fungsi publik
simpul
::tensorflow::Node * node() const
operator::tensorflow::Input() const
operator::tensorflow::Keluaran
operator::tensorflow::Output() const
Kecuali dinyatakan lain, konten di halaman ini dilisensikan berdasarkan Lisensi Creative Commons Attribution 4.0, sedangkan contoh kode dilisensikan berdasarkan Lisensi Apache 2.0. Untuk mengetahui informasi selengkapnya, lihat Kebijakan Situs Google Developers. Java adalah merek dagang terdaftar dari Oracle dan/atau afiliasinya.
Terakhir diperbarui pada 2025-07-26 UTC.
[null,null,["Terakhir diperbarui pada 2025-07-26 UTC."],[],[],null,["# tensorflow::ops::InTopKV2 Class Reference\n\ntensorflow::ops::InTopKV2\n=========================\n\n`#include \u003cnn_ops.h\u003e`\n\nSays whether the targets are in the top `K` predictions.\n\nSummary\n-------\n\nThis outputs a `batch_size` bool array, an entry `out[i]` is `true` if the prediction for the target class is among the top `k` predictions among all predictions for example `i`. Note that the behavior of [InTopK](/versions/r1.15/api_docs/cc/class/tensorflow/ops/in-top-k#classtensorflow_1_1ops_1_1_in_top_k) differs from the [TopK](/versions/r1.15/api_docs/cc/class/tensorflow/ops/top-k#classtensorflow_1_1ops_1_1_top_k) op in its handling of ties; if multiple classes have the same prediction value and straddle the top-`k` boundary, all of those classes are considered to be in the top `k`.\n\nMore formally, let\n\n\\\\(predictions_i\\\\) be the predictions for all classes for example `i`, \\\\(targets_i\\\\) be the target class for example `i`, \\\\(out_i\\\\) be the output for example `i`,\n\n$$out_i = predictions_{i, targets_i} TopKIncludingTies(predictions_i)$$\n\nArguments:\n\n- scope: A [Scope](/versions/r1.15/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope) object\n- predictions: A `batch_size` x `classes` tensor.\n- targets: A `batch_size` vector of class ids.\n- k: Number of top elements to look at for computing precision.\n\n\u003cbr /\u003e\n\nReturns:\n\n- [Output](/versions/r1.15/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output): Computed precision at `k` as a `bool `[Tensor](/versions/r1.15/api_docs/cc/class/tensorflow/tensor#classtensorflow_1_1_tensor).\n\n\u003cbr /\u003e\n\n| ### Constructors and Destructors ||\n|---|---|\n| [InTopKV2](#classtensorflow_1_1ops_1_1_in_top_k_v2_1a7c731af26675d2a0a5e65d4bf0501a07)`(const ::`[tensorflow::Scope](/versions/r1.15/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` predictions, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` targets, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` k)` ||\n\n| ### Public attributes ||\n|-----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|\n| [operation](#classtensorflow_1_1ops_1_1_in_top_k_v2_1ad9127d0ee0e56405da77c8f8f0b0ad34) | [Operation](/versions/r1.15/api_docs/cc/class/tensorflow/operation#classtensorflow_1_1_operation) |\n| [precision](#classtensorflow_1_1ops_1_1_in_top_k_v2_1a66a3668a94dcfe6ed4412c6d48fac92b) | `::`[tensorflow::Output](/versions/r1.15/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n\n| ### Public functions ||\n|-----------------------------------------------------------------------------------------------------------------------|------------------------|\n| [node](#classtensorflow_1_1ops_1_1_in_top_k_v2_1aca4c7a082803ec5e95dfcafac0999657)`() const ` | `::tensorflow::Node *` |\n| [operator::tensorflow::Input](#classtensorflow_1_1ops_1_1_in_top_k_v2_1a7197986e89c2315b1a6458dcffdfd0d5)`() const ` | ` ` ` ` |\n| [operator::tensorflow::Output](#classtensorflow_1_1ops_1_1_in_top_k_v2_1aa8a166a0b803daf34df7fd9ef3c91d40)`() const ` | ` ` ` ` |\n\nPublic attributes\n-----------------\n\n### operation\n\n```text\nOperation operation\n``` \n\n### precision\n\n```text\n::tensorflow::Output precision\n``` \n\nPublic functions\n----------------\n\n### InTopKV2\n\n```gdscript\n InTopKV2(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input predictions,\n ::tensorflow::Input targets,\n ::tensorflow::Input k\n)\n``` \n\n### node\n\n```gdscript\n::tensorflow::Node * node() const \n``` \n\n### operator::tensorflow::Input\n\n```gdscript\n operator::tensorflow::Input() const \n``` \n\n### operator::tensorflow::Output\n\n```gdscript\n operator::tensorflow::Output() const \n```"]]