Mantenha tudo organizado com as coleções
Salve e categorize o conteúdo com base nas suas preferências.
fluxo tensor:: ops:: NonMaxSuppressionWithOverlaps
#include <image_ops.h>
Seleciona avidamente um subconjunto de caixas delimitadoras em ordem decrescente de pontuação.
Resumo
podando caixas que tenham grandes sobreposições com caixas previamente selecionadas. As caixas delimitadoras com pontuação menor que score_threshold
são removidas. Os valores de sobreposição N por n são fornecidos como matriz quadrada, o que permite definir um critério de sobreposição personalizado (por exemplo, interseção sobre união, interseção sobre área, etc.).
A saída desta operação é um conjunto de inteiros indexados na coleção de entrada de caixas delimitadoras que representam as caixas selecionadas. As coordenadas da caixa delimitadora correspondentes aos índices selecionados podem então ser obtidas usando a tf.gather operation
. Por exemplo:
índices_selecionados = tf.image.non_max_suppression_with_overlaps(sobreposições, pontuações, tamanho_de_saída_max, limite_de sobreposição, limite_de pontuação) caixas_selecionadas = tf.gather(caixas, índices_selecionados)
Argumentos:
- escopo: um objeto Escopo
- sobreposições: um tensor flutuante 2-D de forma
[num_boxes, num_boxes]
representando os valores de sobreposição de caixa n por n. - pontuações: um tensor flutuante 1-D de forma
[num_boxes]
representando uma única pontuação correspondente a cada caixa (cada linha de caixas). - max_output_size: Um tensor inteiro escalar que representa o número máximo de caixas a serem selecionadas por supressão não máxima.
- overlay_threshold: um tensor flutuante 0-D que representa o limite para decidir se as caixas também se sobrepõem.
- score_threshold: um tensor flutuante 0-D que representa o limite para decidir quando remover caixas com base na pontuação.
Retorna:
-
Output
: um tensor inteiro 1-D de forma [M]
representando os índices selecionados do tensor de caixas, onde M <= max_output_size
.
Atributos públicos
Funções públicas
nó
::tensorflow::Node * node() const
operator::tensorflow::Input() const
operador::tensorflow::Saída
operator::tensorflow::Output() const
Exceto em caso de indicação contrária, o conteúdo desta página é licenciado de acordo com a Licença de atribuição 4.0 do Creative Commons, e as amostras de código são licenciadas de acordo com a Licença Apache 2.0. Para mais detalhes, consulte as políticas do site do Google Developers. Java é uma marca registrada da Oracle e/ou afiliadas.
Última atualização 2025-07-26 UTC.
[null,null,["Última atualização 2025-07-26 UTC."],[],[],null,["# tensorflow::ops::NonMaxSuppressionWithOverlaps Class Reference\n\ntensorflow::ops::NonMaxSuppressionWithOverlaps\n==============================================\n\n`#include \u003cimage_ops.h\u003e`\n\nGreedily selects a subset of bounding boxes in descending order of score,.\n\nSummary\n-------\n\npruning away boxes that have high overlaps with previously selected boxes. Bounding boxes with score less than `score_threshold` are removed. N-by-n overlap values are supplied as square matrix, which allows for defining a custom overlap criterium (eg. intersection over union, intersection over area, etc.).\n\nThe output of this operation is a set of integers indexing into the input collection of bounding boxes representing the selected boxes. The bounding box coordinates corresponding to the selected indices can then be obtained using the `tf.gather operation`. For example:\n\nselected_indices = tf.image.non_max_suppression_with_overlaps( overlaps, scores, max_output_size, overlap_threshold, score_threshold) selected_boxes = tf.gather(boxes, selected_indices)\n\nArguments:\n\n- scope: A [Scope](/versions/r1.15/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope) object\n- overlaps: A 2-D float tensor of shape `[num_boxes, num_boxes]` representing the n-by-n box overlap values.\n- scores: A 1-D float tensor of shape `[num_boxes]` representing a single score corresponding to each box (each row of boxes).\n- max_output_size: A scalar integer tensor representing the maximum number of boxes to be selected by non max suppression.\n- overlap_threshold: A 0-D float tensor representing the threshold for deciding whether boxes overlap too.\n- score_threshold: A 0-D float tensor representing the threshold for deciding when to remove boxes based on score.\n\n\u003cbr /\u003e\n\nReturns:\n\n- [Output](/versions/r1.15/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output): A 1-D integer tensor of shape `[M]` representing the selected indices from the boxes tensor, where `M \u003c= max_output_size`.\n\n\u003cbr /\u003e\n\n| ### Constructors and Destructors ||\n|---|---|\n| [NonMaxSuppressionWithOverlaps](#classtensorflow_1_1ops_1_1_non_max_suppression_with_overlaps_1af965488437d8cbc7c79e1c36eca2abb3)`(const ::`[tensorflow::Scope](/versions/r1.15/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` overlaps, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` scores, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` max_output_size, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` overlap_threshold, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` score_threshold)` ||\n\n| ### Public attributes ||\n|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|\n| [operation](#classtensorflow_1_1ops_1_1_non_max_suppression_with_overlaps_1a2f05b95bdafce0c5fc4a8269b35709e3) | [Operation](/versions/r1.15/api_docs/cc/class/tensorflow/operation#classtensorflow_1_1_operation) |\n| [selected_indices](#classtensorflow_1_1ops_1_1_non_max_suppression_with_overlaps_1ab9ac497f027b7104d8ba5463a5a487ca) | `::`[tensorflow::Output](/versions/r1.15/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n\n| ### Public functions ||\n|---------------------------------------------------------------------------------------------------------------------------------------------|------------------------|\n| [node](#classtensorflow_1_1ops_1_1_non_max_suppression_with_overlaps_1a77c8843216c117ea9cc2597027f4a20e)`() const ` | `::tensorflow::Node *` |\n| [operator::tensorflow::Input](#classtensorflow_1_1ops_1_1_non_max_suppression_with_overlaps_1a46f0366220ce965998602e5248c93070)`() const ` | ` ` ` ` |\n| [operator::tensorflow::Output](#classtensorflow_1_1ops_1_1_non_max_suppression_with_overlaps_1a636de2d3e1a950d52efadd9bff02eb59)`() const ` | ` ` ` ` |\n\nPublic attributes\n-----------------\n\n### operation\n\n```text\nOperation operation\n``` \n\n### selected_indices\n\n```scdoc\n::tensorflow::Output selected_indices\n``` \n\nPublic functions\n----------------\n\n### NonMaxSuppressionWithOverlaps\n\n```gdscript\n NonMaxSuppressionWithOverlaps(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input overlaps,\n ::tensorflow::Input scores,\n ::tensorflow::Input max_output_size,\n ::tensorflow::Input overlap_threshold,\n ::tensorflow::Input score_threshold\n)\n``` \n\n### node\n\n```gdscript\n::tensorflow::Node * node() const \n``` \n\n### operator::tensorflow::Input\n\n```gdscript\n operator::tensorflow::Input() const \n``` \n\n### operator::tensorflow::Output\n\n```gdscript\n operator::tensorflow::Output() const \n```"]]