Tetap teratur dengan koleksi
Simpan dan kategorikan konten berdasarkan preferensi Anda.
aliran tensor:: operasi:: Bantalan
#include <array_ops.h>
Mengisi tensor dengan nol.
Ringkasan
Operasi ini mengisi input
dengan nol sesuai dengan paddings
yang Anda tentukan. paddings
adalah tensor bilangan bulat dengan bentuk [Dn, 2]
, di mana n adalah rank input
. Untuk setiap dimensi D input
, paddings[D, 0]
menunjukkan berapa banyak angka nol yang ditambahkan sebelum konten input
dalam dimensi tersebut, dan paddings[D, 1]
menunjukkan berapa banyak angka nol yang ditambahkan setelah konten input
dalam dimensi tersebut.
Ukuran empuk setiap dimensi D keluaran adalah:
paddings(D, 0) + input.dim_size(D) + paddings(D, 1)
Misalnya:
# 't' is [[1, 1], [2, 2]]
# 'paddings' is [[1, 1], [2, 2]]
# rank of 't' is 2
pad(t, paddings) ==> [[0, 0, 0, 0, 0, 0]
[0, 0, 1, 1, 0, 0]
[0, 0, 2, 2, 0, 0]
[0, 0, 0, 0, 0, 0]]
Argumen:
Pengembalian:
Atribut publik
Fungsi publik
simpul
::tensorflow::Node * node() const
operator::tensorflow::Input() const
operator::tensorflow::Keluaran
operator::tensorflow::Output() const
Kecuali dinyatakan lain, konten di halaman ini dilisensikan berdasarkan Lisensi Creative Commons Attribution 4.0, sedangkan contoh kode dilisensikan berdasarkan Lisensi Apache 2.0. Untuk mengetahui informasi selengkapnya, lihat Kebijakan Situs Google Developers. Java adalah merek dagang terdaftar dari Oracle dan/atau afiliasinya.
Terakhir diperbarui pada 2025-07-25 UTC.
[null,null,["Terakhir diperbarui pada 2025-07-25 UTC."],[],[],null,["# tensorflow::ops::Pad Class Reference\n\ntensorflow::ops::Pad\n====================\n\n`#include \u003carray_ops.h\u003e`\n\nPads a tensor with zeros.\n\nSummary\n-------\n\nThis operation pads a `input` with zeros according to the `paddings` you specify. `paddings` is an integer tensor with shape `[Dn, 2]`, where n is the rank of `input`. For each dimension D of `input`, `paddings[D, 0]` indicates how many zeros to add before the contents of `input` in that dimension, and `paddings[D, 1]` indicates how many zeros to add after the contents of `input` in that dimension.\n\nThe padded size of each dimension D of the output is:\n\n\n`paddings(D, 0) + input.dim_size(D) + paddings(D, 1)`\n\nFor example:\n\n\n```text\n# 't' is [[1, 1], [2, 2]]\n# 'paddings' is [[1, 1], [2, 2]]\n# rank of 't' is 2\npad(t, paddings) ==\u003e [[0, 0, 0, 0, 0, 0]\n [0, 0, 1, 1, 0, 0]\n [0, 0, 2, 2, 0, 0]\n [0, 0, 0, 0, 0, 0]]\n```\n\n\u003cbr /\u003e\n\nArguments:\n\n- scope: A [Scope](/versions/r1.15/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope) object\n\n\u003cbr /\u003e\n\nReturns:\n\n- [Output](/versions/r1.15/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output): The output tensor.\n\n\u003cbr /\u003e\n\n| ### Constructors and Destructors ||\n|---|---|\n| [Pad](#classtensorflow_1_1ops_1_1_pad_1a85413c81814471dc1ba383fffd013f80)`(const ::`[tensorflow::Scope](/versions/r1.15/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` input, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` paddings)` ||\n\n| ### Public attributes ||\n|---------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|\n| [operation](#classtensorflow_1_1ops_1_1_pad_1a563b99bce289e4fa9fff7224401df773) | [Operation](/versions/r1.15/api_docs/cc/class/tensorflow/operation#classtensorflow_1_1_operation) |\n| [output](#classtensorflow_1_1ops_1_1_pad_1aa9ec34eb45ae5c727d6bba3e8b51be74) | `::`[tensorflow::Output](/versions/r1.15/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n\n| ### Public functions ||\n|---------------------------------------------------------------------------------------------------------------|------------------------|\n| [node](#classtensorflow_1_1ops_1_1_pad_1a56e85f7a36d0008faa2e054812438b98)`() const ` | `::tensorflow::Node *` |\n| [operator::tensorflow::Input](#classtensorflow_1_1ops_1_1_pad_1a800a33c0560ed61b5f202d6a5aaf4ca9)`() const ` | ` ` ` ` |\n| [operator::tensorflow::Output](#classtensorflow_1_1ops_1_1_pad_1a177bc15a4ed8369a6438d47130f9ac27)`() const ` | ` ` ` ` |\n\nPublic attributes\n-----------------\n\n### operation\n\n```text\nOperation operation\n``` \n\n### output\n\n```text\n::tensorflow::Output output\n``` \n\nPublic functions\n----------------\n\n### Pad\n\n```gdscript\n Pad(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input input,\n ::tensorflow::Input paddings\n)\n``` \n\n### node\n\n```gdscript\n::tensorflow::Node * node() const \n``` \n\n### operator::tensorflow::Input\n\n```gdscript\n operator::tensorflow::Input() const \n``` \n\n### operator::tensorflow::Output\n\n```gdscript\n operator::tensorflow::Output() const \n```"]]