Tetap teratur dengan koleksi
Simpan dan kategorikan konten berdasarkan preferensi Anda.
aliran tensor:: operasi:: JarangPadatCwiseMul
#include <sparse_ops.h>
Berdasarkan komponen, SparseTensor dikalikan dengan Tensor padat.
Ringkasan
Lokasi keluaran yang sesuai dengan elemen nol secara implisit dalam tensor renggang akan menjadi nol (yaitu, tidak akan memakan ruang penyimpanan), terlepas dari konten tensor padat (meskipun +/-INF dan INF*0 == tidak).
Batasan : Op ini hanya menyiarkan sisi padat ke sisi jarang, tapi tidak ke arah lain.
Argumen:
- ruang lingkup: Objek Lingkup
- sp_indices: 2-D. Matriks
N x R
dengan indeks nilai tidak kosong dalam SparseTensor, mungkin tidak dalam urutan kanonik. - sp_values: 1-D.
N
nilai tidak kosong yang sesuai dengan sp_indices
. - sp_bentuk: 1-D. Bentuk masukan SparseTensor.
- padat:
R
-D. Operan Tensor yang padat.
Pengembalian:
-
Output
: 1-D. Nilai N
yang dioperasikan.
Atribut publik
Fungsi publik
simpul
::tensorflow::Node * node() const
operator::tensorflow::Input() const
operator::tensorflow::Keluaran
operator::tensorflow::Output() const
Kecuali dinyatakan lain, konten di halaman ini dilisensikan berdasarkan Lisensi Creative Commons Attribution 4.0, sedangkan contoh kode dilisensikan berdasarkan Lisensi Apache 2.0. Untuk mengetahui informasi selengkapnya, lihat Kebijakan Situs Google Developers. Java adalah merek dagang terdaftar dari Oracle dan/atau afiliasinya.
Terakhir diperbarui pada 2025-07-25 UTC.
[null,null,["Terakhir diperbarui pada 2025-07-25 UTC."],[],[],null,["# tensorflow::ops::SparseDenseCwiseMul Class Reference\n\ntensorflow::ops::SparseDenseCwiseMul\n====================================\n\n`#include \u003csparse_ops.h\u003e`\n\nComponent-wise multiplies a SparseTensor by a dense [Tensor](/versions/r1.15/api_docs/cc/class/tensorflow/tensor#classtensorflow_1_1_tensor).\n\nSummary\n-------\n\nThe output locations corresponding to the implicitly zero elements in the sparse tensor will be zero (i.e., will not take up storage space), regardless of the contents of the dense tensor (even if it's +/-INF and that INF\\*0 == NaN).\n\n*Limitation*: this Op only broadcasts the dense side to the sparse side, but not the other direction.\n\nArguments:\n\n- scope: A [Scope](/versions/r1.15/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope) object\n- sp_indices: 2-D. `N x R` matrix with the indices of non-empty values in a SparseTensor, possibly not in canonical ordering.\n- sp_values: 1-D. `N` non-empty values corresponding to `sp_indices`.\n- sp_shape: 1-D. Shape of the input SparseTensor.\n- dense: `R`-D. The dense [Tensor](/versions/r1.15/api_docs/cc/class/tensorflow/tensor#classtensorflow_1_1_tensor) operand.\n\n\u003cbr /\u003e\n\nReturns:\n\n- [Output](/versions/r1.15/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output): 1-D. The `N` values that are operated on.\n\n\u003cbr /\u003e\n\n| ### Constructors and Destructors ||\n|---|---|\n| [SparseDenseCwiseMul](#classtensorflow_1_1ops_1_1_sparse_dense_cwise_mul_1a884270b76fd3fbf6b5db27dbb284b825)`(const ::`[tensorflow::Scope](/versions/r1.15/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` sp_indices, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` sp_values, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` sp_shape, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` dense)` ||\n\n| ### Public attributes ||\n|----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|\n| [operation](#classtensorflow_1_1ops_1_1_sparse_dense_cwise_mul_1a1cbb106ceb29f4d80fa5618ac7a0391f) | [Operation](/versions/r1.15/api_docs/cc/class/tensorflow/operation#classtensorflow_1_1_operation) |\n| [output](#classtensorflow_1_1ops_1_1_sparse_dense_cwise_mul_1a90d4c55f83816dd179b83fb561a3d14a) | `::`[tensorflow::Output](/versions/r1.15/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n\n| ### Public functions ||\n|----------------------------------------------------------------------------------------------------------------------------------|------------------------|\n| [node](#classtensorflow_1_1ops_1_1_sparse_dense_cwise_mul_1a129f0f5944cd5528658cb2fe913a8e88)`() const ` | `::tensorflow::Node *` |\n| [operator::tensorflow::Input](#classtensorflow_1_1ops_1_1_sparse_dense_cwise_mul_1af40c98d474b6d10da285068a5865bbcb)`() const ` | ` ` ` ` |\n| [operator::tensorflow::Output](#classtensorflow_1_1ops_1_1_sparse_dense_cwise_mul_1a820cf17bf53dea855ae65c6afa1bf5e8)`() const ` | ` ` ` ` |\n\nPublic attributes\n-----------------\n\n### operation\n\n```text\nOperation operation\n``` \n\n### output\n\n```text\n::tensorflow::Output output\n``` \n\nPublic functions\n----------------\n\n### SparseDenseCwiseMul\n\n```gdscript\n SparseDenseCwiseMul(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input sp_indices,\n ::tensorflow::Input sp_values,\n ::tensorflow::Input sp_shape,\n ::tensorflow::Input dense\n)\n``` \n\n### node\n\n```gdscript\n::tensorflow::Node * node() const \n``` \n\n### operator::tensorflow::Input\n\n```gdscript\n operator::tensorflow::Input() const \n``` \n\n### operator::tensorflow::Output\n\n```gdscript\n operator::tensorflow::Output() const \n```"]]