Tetap teratur dengan koleksi
Simpan dan kategorikan konten berdasarkan preferensi Anda.
aliran tensor:: operasi:: Perpecahan Jarang
#include <sparse_ops.h>
Pisahkan SparseTensor
menjadi num_split
tensor sepanjang satu dimensi.
Ringkasan
Jika shape[split_dim]
bukan kelipatan bilangan bulat dari num_split
. Irisan [0 : shape[split_dim] % num_split]
mendapat satu dimensi tambahan. Misalnya jika split_dim = 1
dan num_split = 2
dan inputnya adalah
input_tensor = shape = [2, 7]
[ a d e ]
[b c ]
Secara grafis tensor keluarannya adalah:
output_tensor[0] = shape = [2, 4]
[ a ]
[b c ]
output_tensor[1] = shape = [2, 3]
[ d e ]
[ ]
Argumen:
- ruang lingkup: Objek Lingkup
- split_dim: 0-D. Dimensi yang akan dipecah. Harus berada dalam rentang
[0, rank(shape))
. - indeks: tensor 2-D mewakili indeks tensor renggang.
- nilai: Tensor 1-D mewakili nilai tensor renggang.
- bentuk: 1-D. tensor mewakili bentuk tensor renggang. indeks keluaran: Daftar tensor 1-D mewakili indeks tensor renggang keluaran.
- num_split: Banyaknya cara untuk membagi.
Pengembalian:
-
OutputList
keluaran_indeks -
OutputList
output_values: Daftar tensor 1-D mewakili nilai tensor renggang keluaran. -
OutputList
output_shape: Daftar tensor 1-D mewakili bentuk tensor renggang keluaran.
Atribut publik
Fungsi publik
Kecuali dinyatakan lain, konten di halaman ini dilisensikan berdasarkan Lisensi Creative Commons Attribution 4.0, sedangkan contoh kode dilisensikan berdasarkan Lisensi Apache 2.0. Untuk mengetahui informasi selengkapnya, lihat Kebijakan Situs Google Developers. Java adalah merek dagang terdaftar dari Oracle dan/atau afiliasinya.
Terakhir diperbarui pada 2025-07-25 UTC.
[null,null,["Terakhir diperbarui pada 2025-07-25 UTC."],[],[],null,["# tensorflow::ops::SparseSplit Class Reference\n\ntensorflow::ops::SparseSplit\n============================\n\n`#include \u003csparse_ops.h\u003e`\n\nSplit a `SparseTensor` into `num_split` tensors along one dimension.\n\nSummary\n-------\n\nIf the `shape[split_dim]` is not an integer multiple of `num_split`. Slices `[0 : shape[split_dim] % num_split]` gets one extra dimension. For example, if `split_dim = 1` and `num_split = 2` and the input is \n\n```objective-c\ninput_tensor = shape = [2, 7]\n[ a d e ]\n[b c ]\n```\n\n\u003cbr /\u003e\n\nGraphically the output tensors are: \n\n```objective-c\noutput_tensor[0] = shape = [2, 4]\n[ a ]\n[b c ]\n\noutput_tensor[1] = shape = [2, 3]\n[ d e ]\n[ ]\n```\n\n\u003cbr /\u003e\n\nArguments:\n\n- scope: A [Scope](/versions/r1.15/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope) object\n- split_dim: 0-D. The dimension along which to split. Must be in the range `[0, rank(shape))`.\n- indices: 2-D tensor represents the indices of the sparse tensor.\n- values: 1-D tensor represents the values of the sparse tensor.\n- shape: 1-D. tensor represents the shape of the sparse tensor. output indices: A list of 1-D tensors represents the indices of the output sparse tensors.\n- num_split: The number of ways to split.\n\n\u003cbr /\u003e\n\nReturns:\n\n- `OutputList` output_indices\n- `OutputList` output_values: A list of 1-D tensors represents the values of the output sparse tensors.\n- `OutputList` output_shape: A list of 1-D tensors represents the shape of the output sparse tensors.\n\n\u003cbr /\u003e\n\n| ### Constructors and Destructors ||\n|---|---|\n| [SparseSplit](#classtensorflow_1_1ops_1_1_sparse_split_1a321e452a28531c13e1804a67073d0d86)`(const ::`[tensorflow::Scope](/versions/r1.15/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` split_dim, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` indices, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` values, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` shape, int64 num_split)` ||\n\n| ### Public attributes ||\n|-----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|\n| [operation](#classtensorflow_1_1ops_1_1_sparse_split_1a2974c5fbf83913d7d9f9efaad3748136) | [Operation](/versions/r1.15/api_docs/cc/class/tensorflow/operation#classtensorflow_1_1_operation) |\n| [output_indices](#classtensorflow_1_1ops_1_1_sparse_split_1aa34695e1d3350589e31496300ce37439) | `::`[tensorflow::OutputList](/versions/r1.15/api_docs/cc/group/core#group__core_1gab449e6a3abd500c2f4ea93f9e89ba96c) |\n| [output_shape](#classtensorflow_1_1ops_1_1_sparse_split_1aaadf678ffb2ceae9b4a3a71e743c04e4) | `::`[tensorflow::OutputList](/versions/r1.15/api_docs/cc/group/core#group__core_1gab449e6a3abd500c2f4ea93f9e89ba96c) |\n| [output_values](#classtensorflow_1_1ops_1_1_sparse_split_1a16af03b2decbe6d8c2b506f3e48dca4a) | `::`[tensorflow::OutputList](/versions/r1.15/api_docs/cc/group/core#group__core_1gab449e6a3abd500c2f4ea93f9e89ba96c) |\n\nPublic attributes\n-----------------\n\n### operation\n\n```text\nOperation operation\n``` \n\n### output_indices\n\n```scdoc\n::tensorflow::OutputList output_indices\n``` \n\n### output_shape\n\n```scdoc\n::tensorflow::OutputList output_shape\n``` \n\n### output_values\n\n```scdoc\n::tensorflow::OutputList output_values\n``` \n\nPublic functions\n----------------\n\n### SparseSplit\n\n```gdscript\n SparseSplit(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input split_dim,\n ::tensorflow::Input indices,\n ::tensorflow::Input values,\n ::tensorflow::Input shape,\n int64 num_split\n)\n```"]]