เทนเซอร์โฟลว์:: ปฏิบัติการ:: ความลึกสู่อวกาศ

#include <array_ops.h>

DepthToSpace สำหรับเทนเซอร์ประเภท T

สรุป

จัดเรียงข้อมูลจากความลึกลงในบล็อกข้อมูลเชิงพื้นที่ นี่คือการเปลี่ยนแปลงแบบย้อนกลับของ SpaceToDepth โดยเฉพาะอย่างยิ่ง สหกรณ์นี้จะส่งออกสำเนาของเทนเซอร์อินพุตโดยที่ค่าจากมิติ depth ถูกย้ายในบล็อกเชิงพื้นที่ไปยังมิติ height และ width attr block_size ระบุขนาดบล็อกอินพุตและวิธีการย้ายข้อมูล

  • ชิ้นข้อมูลขนาด block_size * block_size จากความลึกจะถูกจัดเรียงใหม่เป็นบล็อกขนาด block_size x block_size ที่ไม่ทับซ้อนกัน
  • ความกว้างของเทนเซอร์เอาท์พุตคือ input_depth * block_size ในขณะที่ความสูงคือ input_height * block_size
  • พิกัด Y, X ภายในแต่ละบล็อกของภาพที่ส่งออกจะถูกกำหนดโดยองค์ประกอบลำดับสูงของดัชนีช่องสัญญาณเข้า
  • ความลึกของเทนเซอร์อินพุตจะต้องหารด้วย block_size * block_size ลงตัว

data_format attr ระบุเค้าโครงของเทนเซอร์อินพุตและเอาท์พุตด้วยตัวเลือกต่อไปนี้: "NHWC": [ batch, height, width, channels ] "NCHW": [ batch, channels, height, width ] "NCHW_VECT_C": qint8 [ batch, channels / 4, height, width, 4 ]

การพิจารณาการดำเนินการเป็นการแปลง เทนเซอร์ 6-D จะเป็นประโยชน์ เช่น สำหรับ data_format = NHWC แต่ละองค์ประกอบในเทนเซอร์อินพุตสามารถระบุได้ผ่าน 6 พิกัด เรียงลำดับโดยการลดความสำคัญเค้าโครงหน่วยความจำเป็น: n,iY,iX,bY,bX,oC (โดยที่ n=ดัชนีแบทช์, iX, iY หมายถึง X หรือพิกัด Y ภายในรูปภาพอินพุต, bX, bY หมายถึงพิกัดภายในบล็อกเอาต์พุต, oC หมายถึงช่องสัญญาณเอาท์พุต) เอาต์พุตจะเป็นอินพุตที่ถูกย้ายไปยังโครงร่างต่อไปนี้: n,iY,bY,iX,bX,oC

การดำเนินการนี้มีประโยชน์สำหรับการปรับขนาดการเปิดใช้งานระหว่างการโนโวลูชั่น (แต่เก็บข้อมูลทั้งหมด) เช่น แทนที่จะรวมกลุ่ม นอกจากนี้ยังมีประโยชน์สำหรับการฝึกโมเดลแบบ Convolutional เพียงอย่างเดียวอีกด้วย

ตัวอย่างเช่น เมื่อป้อนข้อมูลรูปร่าง [1, 1, 1, 4] , data_format = "NHWC" และ block_size = 2:

x = [[[[1, 2, 3, 4]]]]

  


 

This operation will output a tensor of shape [1, 2, 2, 1]:


 


   

 ที่นี่ อินพุตมีแบทช์ 1 และแต่ละองค์ประกอบแบทช์มีรูปร่าง [1, 1, 4] เอาต์พุตที่เกี่ยวข้องจะมีองค์ประกอบ 2x2 และจะมีความลึก 1 ช่อง (1 = 4 / (block_size * block_size) ) รูปร่างองค์ประกอบเอาต์พุตคือ [2, 2, 1]

สำหรับเทนเซอร์อินพุตที่มีความลึกมากขึ้น รูปร่างของที่นี่ [1, 1, 1, 12] เช่น

 การดำเนินการนี้ สำหรับขนาดบล็อก 2 จะส่งคืนเทนเซอร์ของรูปร่างต่อไปนี้ [1, 2, 2, 3]