جریان تنسور:: عملیات:: ParseExample
#include <parsing_ops.h>
یک بردار مغز را تبدیل می کند. نمونه پروتوها (به عنوان رشته ها) به تانسورهای تایپ شده.
خلاصه
استدلال ها:
- scope: یک شی Scope
- serialized: بردار حاوی دستهای از پروتوهای نمونه سریالسازی شده باینری.
- names: بردار حاوی نام پروتوهای سریال شده. به عنوان مثال، ممکن است شامل نامهای کلید جدول (توصیفی) برای پروتوهای سریالی مربوطه باشد. اینها صرفاً برای اهداف اشکال زدایی مفید هستند و وجود مقادیر در اینجا تأثیری بر خروجی ندارد. اگر نامی در دسترس نباشد، ممکن است یک بردار خالی باشد. اگر خالی نباشد، این بردار باید به اندازه «سریال» باشد.
- sparse_keys: فهرستی از تانسورهای رشته Nsparse (اسکالر). کلیدهای مورد انتظار در ویژگیهای Examples مرتبط با مقادیر پراکنده هستند.
- dense_keys: فهرستی از تانسورهای رشته Ndense (اسکالرها). کلیدهای مورد انتظار در ویژگیهای Examples مرتبط با مقادیر متراکم هستند.
- dense_defaults: فهرستی از تانسورهای Ndense (ممکن است برخی خالی باشند). dense_defaults[j] زمانی مقادیر پیشفرض را ارائه میکند که feature_map مثال فاقد کلید[j] متراکم باشد. اگر یک تانسور خالی برای dense_defaults[j] ارائه شده باشد، سپس Feature dense_keys[j] مورد نیاز است. نوع ورودی از dense_defaults[j] استنباط می شود، حتی زمانی که خالی است. اگر dense_defaults[j] خالی نباشد، و dense_shapes[j] کاملاً تعریف شده باشد، شکل dense_defaults[j] باید با شکل dense_shapes[j] مطابقت داشته باشد. اگر dense_shapes[j] یک بعد اصلی تعریفنشده دارد (ویژگی متراکم گامهای متغیر)، dense_defaults[j] باید یک عنصر واحد داشته باشد: عنصر padding.
- sparse_types: فهرستی از انواع Nsparse. انواع داده های داده در هر ویژگی که در کلیدهای پراکنده ارائه شده است. در حال حاضر ParseExample از DT_FLOAT (FloatList)، DT_INT64 (Int64List) و DT_STRING (BytesList) پشتیبانی می کند.
- dense_shapes: فهرستی از اشکال Ndense. شکل داده ها در هر ویژگی به صورت dense_keys داده شده است. تعداد عناصر موجود در Feature مربوط به dense_key[j] باید همیشه برابر با dense_shapes[j] باشد.NumEntries(). اگر شکلهای متراکم[j] == (D0، D1، ...، DN) شکل تانسورهای متراکم[j] خروجی به صورت (|مجموعه|، D0، D1، ...، DN) خواهد بود: خروجیهای متراکم عبارتند از فقط ورودی ها به صورت دسته ای ردیف شده اند. این برای شکل های متراکم [j] = (-1، D1، ...، DN) کار می کند. در این حالت شکل تانسور خروجی dense_values[j] خواهد بود (|سریال|، M، D1، ..، DN)، که در آن M حداکثر تعداد بلوک های عناصر با طول D1 * .... * DN است. ، در تمام ورودی های minibatch در ورودی. هر ورودی minibatch با کمتر از M بلوک از عناصر به طول D1 * ... * DN با عنصر اسکالر default_value مربوطه در امتداد بعد دوم پر می شود.
برمیگرداند:
-
OutputList
sparse_indexes -
OutputList
sparse_values -
OutputList
sparse_shapes -
OutputList
dense_values
سازندگان و ویرانگرها | |
---|---|
ParseExample (const :: tensorflow::Scope & scope, :: tensorflow::Input serialized, :: tensorflow::Input names, :: tensorflow::InputList sparse_keys, :: tensorflow::InputList dense_keys, :: tensorflow::InputList dense_defaults, const DataTypeSlice & sparse_types, const gtl::ArraySlice< PartialTensorShape > & dense_shapes) |
صفات عمومی
مقادیر_ متراکم
::tensorflow::OutputList dense_values
عملیات
Operation operation
اندیس_های پراکنده
::tensorflow::OutputList sparse_indices
شکل های پراکنده
::tensorflow::OutputList sparse_shapes
مقادیر_کم
::tensorflow::OutputList sparse_values
توابع عمومی
ParseExample
ParseExample( const ::tensorflow::Scope & scope, ::tensorflow::Input serialized, ::tensorflow::Input names, ::tensorflow::InputList sparse_keys, ::tensorflow::InputList dense_keys, ::tensorflow::InputList dense_defaults, const DataTypeSlice & sparse_types, const gtl::ArraySlice< PartialTensorShape > & dense_shapes )