tensorflow:: אופס:: SparseApplyFtrlV2
#include <training_ops.h>
עדכן את הערכים הרלוונטיים ב-'*var' בהתאם לתוכנית ה-Ftrl-proximal.
תַקצִיר
כלומר עבור שורות שיש לנו גראד עבורן, אנו מעדכנים var, accum וליניארי באופן הבא: grad_with_shrinkage = grad + 2 * l2_shrinkage * var accum_new = accum + grad_with_shrinkage * grad_with_shrinkage linear += grad_with_shrinkage + (accum_power_)(-lr^ (-lr_power)) / lr * var quadratic = 1.0 / (accum_new^(lr_power) * lr) + 2 * l2 var = (סימן (ליניארי) * l1 - ליניארי) / ריבועי אם |ליניארי| > l1 אחר 0.0 accum = accum_new
טיעונים:
- scope: אובייקט Scope
- var: צריך להיות מ-Variable().
- acum: צריך להיות מ-Variable().
- ליניארי: צריך להיות ממשתנה().
- grad: השיפוע.
- מדדים: וקטור של מדדים למימד הראשון של var ו-acum.
- lr: גורם קנה מידה. חייב להיות סקלר.
- l1: הסדרת L1. חייב להיות סקלר.
- l2: הסדרת הצטמקות L2. חייב להיות סקלר.
- lr_power: גורם קנה מידה. חייב להיות סקלר.
מאפיינים אופציונליים (ראה Attrs
):
- use_locking: אם
True
, עדכון של טנסור ה-var ו-acum יהיה מוגן על ידי מנעול; אחרת ההתנהגות אינה מוגדרת, אך עלולה להפגין פחות מחלוקת.
החזרות:
-
Output
: זהה ל-"var".
בנאים והורסים | |
---|---|
SparseApplyFtrlV2 (const :: tensorflow::Scope & scope, :: tensorflow::Input var, :: tensorflow::Input accum, :: tensorflow::Input linear, :: tensorflow::Input grad, :: tensorflow::Input indices, :: tensorflow::Input lr, :: tensorflow::Input l1, :: tensorflow::Input l2, :: tensorflow::Input l2_shrinkage, :: tensorflow::Input lr_power) | |
SparseApplyFtrlV2 (const :: tensorflow::Scope & scope, :: tensorflow::Input var, :: tensorflow::Input accum, :: tensorflow::Input linear, :: tensorflow::Input grad, :: tensorflow::Input indices, :: tensorflow::Input lr, :: tensorflow::Input l1, :: tensorflow::Input l2, :: tensorflow::Input l2_shrinkage, :: tensorflow::Input lr_power, const SparseApplyFtrlV2::Attrs & attrs) |
תפקידים ציבוריים | |
---|---|
node () const | ::tensorflow::Node * |
operator::tensorflow::Input () const | |
operator::tensorflow::Output () const |
פונקציות סטטיות ציבוריות | |
---|---|
UseLocking (bool x) |
מבנים | |
---|---|
tensorflow:: ops:: SparseApplyFtrlV2:: Attrs | קובעי תכונות אופציונליים עבור SparseApplyFtrlV2 . |
תכונות ציבוריות
מִבצָע
Operation operation
הַחוּצָה
::tensorflow::Output out
תפקידים ציבוריים
SparseApplyFtrlV2
SparseApplyFtrlV2(
const ::tensorflow::Scope & scope,
::tensorflow::Input var,
::tensorflow::Input accum,
::tensorflow::Input linear,
::tensorflow::Input grad,
::tensorflow::Input indices,
::tensorflow::Input lr,
::tensorflow::Input l1,
::tensorflow::Input l2,
::tensorflow::Input l2_shrinkage,
::tensorflow::Input lr_power
)
SparseApplyFtrlV2
SparseApplyFtrlV2(
const ::tensorflow::Scope & scope,
::tensorflow::Input var,
::tensorflow::Input accum,
::tensorflow::Input linear,
::tensorflow::Input grad,
::tensorflow::Input indices,
::tensorflow::Input lr,
::tensorflow::Input l1,
::tensorflow::Input l2,
::tensorflow::Input l2_shrinkage,
::tensorflow::Input lr_power,
const SparseApplyFtrlV2::Attrs & attrs
)
צוֹמֶת
::tensorflow::Node * node() const
מפעיל::tensorflow::קלט
operator::tensorflow::Input() const
אופרטור::tensorflow::פלט
operator::tensorflow::Output() const
פונקציות סטטיות ציבוריות
השתמש בנעילה
Attrs UseLocking(
bool x
)