tensorflow:: אופס:: SparseApplyFtrl
#include <training_ops.h>
עדכן את הערכים הרלוונטיים ב-'*var' בהתאם לתוכנית ה-Ftrl-proximal.
תַקצִיר
כלומר עבור שורות שיש לנו גראד עבורן, אנו מעדכנים var, accum וליניארי באופן הבא: $$accum_new = accum + grad * grad$$ $$linear += grad + (accum_{new}^{-lr_{power}} - accum^{-lr_{power}} / lr * var$$ $$quadratic = 1.0 / (accum_{new}^{lr_{power}} * lr) + 2 * l2$$ $$var = (sign(linear) * l1 - linear) / quadratic\ if\ |linear| > l1\ else\ 0.0$$ $$accum = accum_{new}$$
טיעונים:
- scope: אובייקט Scope
- var: צריך להיות מ-Variable().
- acum: צריך להיות ממשתנה().
- ליניארי: צריך להיות ממשתנה().
- grad: השיפוע.
- מדדים: וקטור של מדדים למימד הראשון של var ו-acum.
- lr: גורם קנה מידה. חייב להיות סקלר.
- l1: הסדרת L1. חייב להיות סקלר.
- l2: הסדרת L2. חייב להיות סקלר.
- lr_power: גורם קנה מידה. חייב להיות סקלר.
מאפיינים אופציונליים (ראה Attrs
):
- use_locking: אם
True
, עדכון של טנסור ה-var ו-acum יהיה מוגן על ידי מנעול; אחרת ההתנהגות אינה מוגדרת, אך עלולה להפגין פחות מחלוקת.
החזרות:
-
Output
: זהה ל-"var".
בנאים והורסים | |
---|---|
SparseApplyFtrl (const :: tensorflow::Scope & scope, :: tensorflow::Input var, :: tensorflow::Input accum, :: tensorflow::Input linear, :: tensorflow::Input grad, :: tensorflow::Input indices, :: tensorflow::Input lr, :: tensorflow::Input l1, :: tensorflow::Input l2, :: tensorflow::Input lr_power) | |
SparseApplyFtrl (const :: tensorflow::Scope & scope, :: tensorflow::Input var, :: tensorflow::Input accum, :: tensorflow::Input linear, :: tensorflow::Input grad, :: tensorflow::Input indices, :: tensorflow::Input lr, :: tensorflow::Input l1, :: tensorflow::Input l2, :: tensorflow::Input lr_power, const SparseApplyFtrl::Attrs & attrs) |
תכונות ציבוריות | |
---|---|
operation | |
out |
תפקידים ציבוריים | |
---|---|
node () const | ::tensorflow::Node * |
operator::tensorflow::Input () const | |
operator::tensorflow::Output () const |
פונקציות סטטיות ציבוריות | |
---|---|
UseLocking (bool x) |
מבנים | |
---|---|
tensorflow:: ops:: SparseApplyFtrl:: Attrs | קובעי תכונות אופציונליים עבור SparseApplyFtrl . |
תכונות ציבוריות
מִבצָע
Operation operation
הַחוּצָה
::tensorflow::Output out
תפקידים ציבוריים
SparseApplyFtrl
SparseApplyFtrl( const ::tensorflow::Scope & scope, ::tensorflow::Input var, ::tensorflow::Input accum, ::tensorflow::Input linear, ::tensorflow::Input grad, ::tensorflow::Input indices, ::tensorflow::Input lr, ::tensorflow::Input l1, ::tensorflow::Input l2, ::tensorflow::Input lr_power )
SparseApplyFtrl
SparseApplyFtrl( const ::tensorflow::Scope & scope, ::tensorflow::Input var, ::tensorflow::Input accum, ::tensorflow::Input linear, ::tensorflow::Input grad, ::tensorflow::Input indices, ::tensorflow::Input lr, ::tensorflow::Input l1, ::tensorflow::Input l2, ::tensorflow::Input lr_power, const SparseApplyFtrl::Attrs & attrs )
צוֹמֶת
::tensorflow::Node * node() const
מפעיל::tensorflow::קלט
operator::tensorflow::Input() const
אופרטור::tensorflow::פלט
operator::tensorflow::Output() const
פונקציות סטטיות ציבוריות
השתמש בנעילה
Attrs UseLocking( bool x )