Mantieni tutto organizzato con le raccolte
Salva e classifica i contenuti in base alle tue preferenze.
tensoreflusso:: ops:: MirrorPad
#include <array_ops.h>
Riempie un tensore con valori specchiati.
Riepilogo
Questa operazione riempie un input
con valori specchiati in base ai paddings
specificati. paddings
è un tensore intero con forma [n, 2]
, dove n è il rango di input
. Per ogni dimensione D di input
, paddings[D, 0]
indica quanti valori aggiungere prima del contenuto di input
in quella dimensione e paddings[D, 1]
indica quanti valori aggiungere dopo il contenuto di input
in quella dimensione. Entrambi paddings[D, 0]
e paddings[D, 1]
non devono essere maggiori di input.dim_size(D)
(o input.dim_size(D) - 1
) se copy_border
è true (se false, rispettivamente).
La dimensione riempita di ciascuna dimensione D dell'output è:
paddings(D, 0) + input.dim_size(D) + paddings(D, 1)
Per esempio:
# 't' is [[1, 2, 3], [4, 5, 6]].
# 'paddings' is [[1, 1]], [2, 2]].
# 'mode' is SYMMETRIC.
# rank of 't' is 2.
pad(t, paddings) ==> [[2, 1, 1, 2, 3, 3, 2]
[2, 1, 1, 2, 3, 3, 2]
[5, 4, 4, 5, 6, 6, 5]
[5, 4, 4, 5, 6, 6, 5]]
Argomenti:
- scope: un oggetto Scope
- input: il tensore di input da riempire.
- riempimenti: una matrice a due colonne che specifica le dimensioni del riempimento. Il numero di righe deve essere uguale al rango
input
. - modalità:
REFLECT
o SYMMETRIC
. In modalità riflessione le regioni imbottite non includono i bordi, mentre in modalità simmetrica le regioni imbottite includono i bordi. Ad esempio, se input
è [1, 2, 3]
e paddings
è [0, 2]
, l'output è [1, 2, 3, 2, 1]
in modalità riflessione ed è [1, 2, 3, 3, 2]
in modalità simmetrica.
Resi:
-
Output
: il tensore imbottito.
Attributi pubblici
Funzioni pubbliche
nodo
::tensorflow::Node * node() const
operator::tensorflow::Input() const
operatore::tensorflow::Output
operator::tensorflow::Output() const
Salvo quando diversamente specificato, i contenuti di questa pagina sono concessi in base alla licenza Creative Commons Attribution 4.0, mentre gli esempi di codice sono concessi in base alla licenza Apache 2.0. Per ulteriori dettagli, consulta le norme del sito di Google Developers. Java è un marchio registrato di Oracle e/o delle sue consociate.
Ultimo aggiornamento 2025-07-27 UTC.
[null,null,["Ultimo aggiornamento 2025-07-27 UTC."],[],[],null,["# tensorflow::ops::MirrorPad Class Reference\n\ntensorflow::ops::MirrorPad\n==========================\n\n`#include \u003carray_ops.h\u003e`\n\nPads a tensor with mirrored values.\n\nSummary\n-------\n\nThis operation pads a `input` with mirrored values according to the `paddings` you specify. `paddings` is an integer tensor with shape `[n, 2]`, where n is the rank of `input`. For each dimension D of `input`, `paddings[D, 0]` indicates how many values to add before the contents of `input` in that dimension, and `paddings[D, 1]` indicates how many values to add after the contents of `input` in that dimension. Both `paddings[D, 0]` and `paddings[D, 1]` must be no greater than `input.dim_size(D)` (or `input.dim_size(D) - 1`) if `copy_border` is true (if false, respectively).\n\nThe padded size of each dimension D of the output is:\n\n\n`paddings(D, 0) + input.dim_size(D) + paddings(D, 1)`\n\nFor example:\n\n\n```text\n# 't' is [[1, 2, 3], [4, 5, 6]].\n# 'paddings' is [[1, 1]], [2, 2]].\n# 'mode' is SYMMETRIC.\n# rank of 't' is 2.\npad(t, paddings) ==\u003e [[2, 1, 1, 2, 3, 3, 2]\n [2, 1, 1, 2, 3, 3, 2]\n [5, 4, 4, 5, 6, 6, 5]\n [5, 4, 4, 5, 6, 6, 5]]\n```\n\n\u003cbr /\u003e\n\nArguments:\n\n- scope: A [Scope](/versions/r2.2/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope) object\n- input: The input tensor to be padded.\n- paddings: A two-column matrix specifying the padding sizes. The number of rows must be the same as the rank of `input`.\n- mode: Either `REFLECT` or `SYMMETRIC`. In reflect mode the padded regions do not include the borders, while in symmetric mode the padded regions do include the borders. For example, if `input` is `[1, 2, 3]` and `paddings` is `[0, 2]`, then the output is `[1, 2, 3, 2, 1]` in reflect mode, and it is `[1, 2, 3, 3, 2]` in symmetric mode.\n\n\u003cbr /\u003e\n\nReturns:\n\n- [Output](/versions/r2.2/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output): The padded tensor.\n\n\u003cbr /\u003e\n\n| ### Constructors and Destructors ||\n|---|---|\n| [MirrorPad](#classtensorflow_1_1ops_1_1_mirror_pad_1ade8674bcac38c7b92e49227402b3aeab)`(const ::`[tensorflow::Scope](/versions/r2.2/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r2.2/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` input, ::`[tensorflow::Input](/versions/r2.2/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` paddings, StringPiece mode)` ||\n\n| ### Public attributes ||\n|----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|\n| [operation](#classtensorflow_1_1ops_1_1_mirror_pad_1a20963b11eba097a4a292d10fe912fe9f) | [Operation](/versions/r2.2/api_docs/cc/class/tensorflow/operation#classtensorflow_1_1_operation) |\n| [output](#classtensorflow_1_1ops_1_1_mirror_pad_1acddc2951f705b38786a6c90517025bbd) | `::`[tensorflow::Output](/versions/r2.2/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n\n| ### Public functions ||\n|----------------------------------------------------------------------------------------------------------------------|------------------------|\n| [node](#classtensorflow_1_1ops_1_1_mirror_pad_1ac601ae413e0e24707abfe6bd6e000e3e)`() const ` | `::tensorflow::Node *` |\n| [operator::tensorflow::Input](#classtensorflow_1_1ops_1_1_mirror_pad_1a27d0164d159236fcb1639d0dd7604c31)`() const ` | ` ` ` ` |\n| [operator::tensorflow::Output](#classtensorflow_1_1ops_1_1_mirror_pad_1a682f1e9bfbad14b9b9529733b71dba26)`() const ` | ` ` ` ` |\n\nPublic attributes\n-----------------\n\n### operation\n\n```text\nOperation operation\n``` \n\n### output\n\n```text\n::tensorflow::Output output\n``` \n\nPublic functions\n----------------\n\n### MirrorPad\n\n```gdscript\n MirrorPad(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input input,\n ::tensorflow::Input paddings,\n StringPiece mode\n)\n``` \n\n### node\n\n```gdscript\n::tensorflow::Node * node() const \n``` \n\n### operator::tensorflow::Input\n\n```gdscript\n operator::tensorflow::Input() const \n``` \n\n### operator::tensorflow::Output\n\n```gdscript\n operator::tensorflow::Output() const \n```"]]