Organízate con las colecciones
Guarda y clasifica el contenido según tus preferencias.
flujo tensor:: operaciones:: ResourceSparseApplyCenteredRMSProp
#include <training_ops.h>
Actualice '*var' según el algoritmo RMSProp centrado.
Resumen
El algoritmo RMSProp centrado utiliza una estimación del segundo momento centrado (es decir, la varianza) para la normalización, a diferencia del RMSProp normal, que utiliza el segundo momento (no centrado). Esto suele ayudar con la formación, pero es un poco más caro en términos de cálculo y memoria.
Tenga en cuenta que en una implementación densa de este algoritmo, mg, ms y mom se actualizarán incluso si el grad es cero, pero en esta implementación escasa, mg, ms y mom no se actualizarán en iteraciones durante las cuales el grad sea cero.
cuadrado_medio = decaimiento * cuadrado_medio + (1-decaimiento) * gradiente ** 2 grad_medio = decaimiento * grad_medio + (1-decaimiento) * gradiente Delta = tasa de aprendizaje * gradiente / sqrt (cuadrado_medio + épsilon - grad_medio ** 2)
ms <- rho * ms_{t-1} + (1-rho) * grad * grad mamá <- impulso * mamá_{t-1} + lr * grad / sqrt(ms + épsilon) var <- var - mamá
Argumentos:
- alcance: un objeto de alcance
- var: debe ser de una variable().
- mg: Debe ser de una Variable().
- ms: debe ser de una variable().
- mamá: Debería ser de una Variable().
- lr: Factor de escala. Debe ser un escalar.
- rho: tasa de desintegración. Debe ser un escalar.
- épsilon: término de cresta. Debe ser un escalar.
- grad: El gradiente.
- índices: un vector de índices en la primera dimensión de var, ms y mom.
Atributos opcionales (ver Attrs
):
- use_locking: si es
True
, la actualización de los tensores var, mg, ms y mom está protegida por un bloqueo; de lo contrario, el comportamiento no está definido, pero puede presentar menos contención.
Devoluciones:
Constructores y destructores |
---|
ResourceSparseApplyCenteredRMSProp (const :: tensorflow::Scope & scope, :: tensorflow::Input var, :: tensorflow::Input mg, :: tensorflow::Input ms, :: tensorflow::Input mom, :: tensorflow::Input lr, :: tensorflow::Input rho, :: tensorflow::Input momentum, :: tensorflow::Input epsilon, :: tensorflow::Input grad, :: tensorflow::Input indices)
|
ResourceSparseApplyCenteredRMSProp (const :: tensorflow::Scope & scope, :: tensorflow::Input var, :: tensorflow::Input mg, :: tensorflow::Input ms, :: tensorflow::Input mom, :: tensorflow::Input lr, :: tensorflow::Input rho, :: tensorflow::Input momentum, :: tensorflow::Input epsilon, :: tensorflow::Input grad, :: tensorflow::Input indices, const ResourceSparseApplyCenteredRMSProp::Attrs & attrs) |
Atributos públicos
Funciones públicas
ResourceSparseApplyCenteredRMSProp
ResourceSparseApplyCenteredRMSProp(
const ::tensorflow::Scope & scope,
::tensorflow::Input var,
::tensorflow::Input mg,
::tensorflow::Input ms,
::tensorflow::Input mom,
::tensorflow::Input lr,
::tensorflow::Input rho,
::tensorflow::Input momentum,
::tensorflow::Input epsilon,
::tensorflow::Input grad,
::tensorflow::Input indices
)
ResourceSparseApplyCenteredRMSProp
ResourceSparseApplyCenteredRMSProp(
const ::tensorflow::Scope & scope,
::tensorflow::Input var,
::tensorflow::Input mg,
::tensorflow::Input ms,
::tensorflow::Input mom,
::tensorflow::Input lr,
::tensorflow::Input rho,
::tensorflow::Input momentum,
::tensorflow::Input epsilon,
::tensorflow::Input grad,
::tensorflow::Input indices,
const ResourceSparseApplyCenteredRMSProp::Attrs & attrs
)
operador::tensorflow::Operación
operator::tensorflow::Operation() const
Funciones estáticas públicas
UsoBloqueo
Attrs UseLocking(
bool x
)
A menos que se indique lo contrario, el contenido de esta página está sujeto a la licencia Reconocimiento 4.0 de Creative Commons y las muestras de código están sujetas a la licencia Apache 2.0. Para obtener más información, consulta las políticas del sitio web de Google Developers. Java es una marca registrada de Oracle o sus afiliados.
Última actualización: 2025-07-27 (UTC).
[null,null,["Última actualización: 2025-07-27 (UTC)."],[],[],null,["# tensorflow::ops::ResourceSparseApplyCenteredRMSProp Class Reference\n\ntensorflow::ops::ResourceSparseApplyCenteredRMSProp\n===================================================\n\n`#include \u003ctraining_ops.h\u003e`\n\nUpdate '\\*var' according to the centered RMSProp algorithm.\n\nSummary\n-------\n\nThe centered RMSProp algorithm uses an estimate of the centered second moment (i.e., the variance) for normalization, as opposed to regular RMSProp, which uses the (uncentered) second moment. This often helps with training, but is slightly more expensive in terms of computation and memory.\n\nNote that in dense implementation of this algorithm, mg, ms, and mom will update even if the grad is zero, but in this sparse implementation, mg, ms, and mom will not update in iterations during which the grad is zero.\n\nmean_square = decay \\* mean_square + (1-decay) \\* gradient \\*\\* 2 mean_grad = decay \\* mean_grad + (1-decay) \\* gradient Delta = learning_rate \\* gradient / sqrt(mean_square + epsilon - mean_grad \\*\\* 2)\n\nms \\\u003c- rho \\* ms_{t-1} + (1-rho) \\* grad \\* grad mom \\\u003c- momentum \\* mom_{t-1} + lr \\* grad / sqrt(ms + epsilon) var \\\u003c- var - mom\n\nArguments:\n\n- scope: A [Scope](/versions/r2.2/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope) object\n- var: Should be from a Variable().\n- mg: Should be from a Variable().\n- ms: Should be from a Variable().\n- mom: Should be from a Variable().\n- lr: Scaling factor. Must be a scalar.\n- rho: Decay rate. Must be a scalar.\n- epsilon: Ridge term. Must be a scalar.\n- grad: The gradient.\n- indices: A vector of indices into the first dimension of var, ms and mom.\n\n\u003cbr /\u003e\n\nOptional attributes (see [Attrs](/versions/r2.2/api_docs/cc/struct/tensorflow/ops/resource-sparse-apply-centered-r-m-s-prop/attrs#structtensorflow_1_1ops_1_1_resource_sparse_apply_centered_r_m_s_prop_1_1_attrs)):\n\n- use_locking: If `True`, updating of the var, mg, ms, and mom tensors is protected by a lock; otherwise the behavior is undefined, but may exhibit less contention.\n\n\u003cbr /\u003e\n\nReturns:\n\n- the created [Operation](/versions/r2.2/api_docs/cc/class/tensorflow/operation#classtensorflow_1_1_operation)\n\n\u003cbr /\u003e\n\n| ### Constructors and Destructors ||\n|---|---|\n| [ResourceSparseApplyCenteredRMSProp](#classtensorflow_1_1ops_1_1_resource_sparse_apply_centered_r_m_s_prop_1a13dce41e7458cfc667c93e6eb59c6b65)`(const ::`[tensorflow::Scope](/versions/r2.2/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r2.2/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` var, ::`[tensorflow::Input](/versions/r2.2/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` mg, ::`[tensorflow::Input](/versions/r2.2/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` ms, ::`[tensorflow::Input](/versions/r2.2/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` mom, ::`[tensorflow::Input](/versions/r2.2/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` lr, ::`[tensorflow::Input](/versions/r2.2/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` rho, ::`[tensorflow::Input](/versions/r2.2/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` momentum, ::`[tensorflow::Input](/versions/r2.2/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` epsilon, ::`[tensorflow::Input](/versions/r2.2/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` grad, ::`[tensorflow::Input](/versions/r2.2/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` indices)` ||\n| [ResourceSparseApplyCenteredRMSProp](#classtensorflow_1_1ops_1_1_resource_sparse_apply_centered_r_m_s_prop_1a52eb0f57f659a5ba696a88c140adcb50)`(const ::`[tensorflow::Scope](/versions/r2.2/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r2.2/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` var, ::`[tensorflow::Input](/versions/r2.2/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` mg, ::`[tensorflow::Input](/versions/r2.2/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` ms, ::`[tensorflow::Input](/versions/r2.2/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` mom, ::`[tensorflow::Input](/versions/r2.2/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` lr, ::`[tensorflow::Input](/versions/r2.2/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` rho, ::`[tensorflow::Input](/versions/r2.2/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` momentum, ::`[tensorflow::Input](/versions/r2.2/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` epsilon, ::`[tensorflow::Input](/versions/r2.2/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` grad, ::`[tensorflow::Input](/versions/r2.2/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` indices, const `[ResourceSparseApplyCenteredRMSProp::Attrs](/versions/r2.2/api_docs/cc/struct/tensorflow/ops/resource-sparse-apply-centered-r-m-s-prop/attrs#structtensorflow_1_1ops_1_1_resource_sparse_apply_centered_r_m_s_prop_1_1_attrs)` & attrs)` ||\n\n| ### Public attributes ||\n|-----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|\n| [operation](#classtensorflow_1_1ops_1_1_resource_sparse_apply_centered_r_m_s_prop_1a9e8632bd56dbebb4ae758e5db70e362e) | [Operation](/versions/r2.2/api_docs/cc/class/tensorflow/operation#classtensorflow_1_1_operation) |\n\n| ### Public functions ||\n|--------------------------------------------------------------------------------------------------------------------------------------------------------|---------|\n| [operator::tensorflow::Operation](#classtensorflow_1_1ops_1_1_resource_sparse_apply_centered_r_m_s_prop_1ab672a067b2ca695827a21dc01767c358)`() const ` | ` ` ` ` |\n\n| ### Public static functions ||\n|----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| [UseLocking](#classtensorflow_1_1ops_1_1_resource_sparse_apply_centered_r_m_s_prop_1ab5163ae6d398ae1e0b22fd8f71091162)`(bool x)` | [Attrs](/versions/r2.2/api_docs/cc/struct/tensorflow/ops/resource-sparse-apply-centered-r-m-s-prop/attrs#structtensorflow_1_1ops_1_1_resource_sparse_apply_centered_r_m_s_prop_1_1_attrs) |\n\n| ### Structs ||\n|----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| [tensorflow::ops::ResourceSparseApplyCenteredRMSProp::Attrs](/versions/r2.2/api_docs/cc/struct/tensorflow/ops/resource-sparse-apply-centered-r-m-s-prop/attrs) | Optional attribute setters for [ResourceSparseApplyCenteredRMSProp](/versions/r2.2/api_docs/cc/class/tensorflow/ops/resource-sparse-apply-centered-r-m-s-prop#classtensorflow_1_1ops_1_1_resource_sparse_apply_centered_r_m_s_prop). |\n\nPublic attributes\n-----------------\n\n### operation\n\n```text\nOperation operation\n``` \n\nPublic functions\n----------------\n\n### ResourceSparseApplyCenteredRMSProp\n\n```gdscript\n ResourceSparseApplyCenteredRMSProp(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input var,\n ::tensorflow::Input mg,\n ::tensorflow::Input ms,\n ::tensorflow::Input mom,\n ::tensorflow::Input lr,\n ::tensorflow::Input rho,\n ::tensorflow::Input momentum,\n ::tensorflow::Input epsilon,\n ::tensorflow::Input grad,\n ::tensorflow::Input indices\n)\n``` \n\n### ResourceSparseApplyCenteredRMSProp\n\n```gdscript\n ResourceSparseApplyCenteredRMSProp(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input var,\n ::tensorflow::Input mg,\n ::tensorflow::Input ms,\n ::tensorflow::Input mom,\n ::tensorflow::Input lr,\n ::tensorflow::Input rho,\n ::tensorflow::Input momentum,\n ::tensorflow::Input epsilon,\n ::tensorflow::Input grad,\n ::tensorflow::Input indices,\n const ResourceSparseApplyCenteredRMSProp::Attrs & attrs\n)\n``` \n\n### operator::tensorflow::Operation\n\n```gdscript\n operator::tensorflow::Operation() const \n``` \n\nPublic static functions\n-----------------------\n\n### UseLocking\n\n```text\nAttrs UseLocking(\n bool x\n)\n```"]]